1
|
You G, Li X, Ren K, Ai T, Niu Y. Effect of Disulfide Bond Density on the Properties of Polyurethane/Epoxy Interpenetrating Networks. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1636. [PMID: 40271877 PMCID: PMC11990366 DOI: 10.3390/ma18071636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025]
Abstract
Interpenetrating polymer networks (IPNs) are widely used as damping materials across various industries. However, they are susceptible to issues such as microcracking or fracture over long-term service periods. To address these challenges and improve the long-term performance of IPNs, this research focused on designing and synthesizing self-healing polyurethane (PU)/epoxy (EP) interpenetrating networks (PU/EP-IPNs) enhanced with dynamic disulfide bonds. The incorporation of these bonds significantly enhanced the damping and self-healing properties of the materials. The shape memory performance was evaluated, demonstrating high shape fixation rates of up to 95.0% and exceptional shape recovery rates of up to 99.7%. These results indicate the materials' ability to revert to their original shape upon heating above the glass transition temperature (Tg). In addition, the effective damping temperature range of the material reached 61.4 °C, and the loss factor was 0.859. This indicates that the enhancement of damping performance is closely related to the increase in disulfide bond density. The formation of the IPN between PU and EP also contributed to improved mechanical and thermomechanical properties. These PU/EP-IPNs exhibit significant potential as innovative damping materials with self-healing capabilities.
Collapse
Affiliation(s)
| | | | | | - Tao Ai
- School of Materials Science and Engineering, Chang’an University, Xi’an 710061, China; (G.Y.)
| | - Yanhui Niu
- School of Materials Science and Engineering, Chang’an University, Xi’an 710061, China; (G.Y.)
| |
Collapse
|
2
|
Wang H, Cao L, Wang X, Lang X, Cong W, Han L, Zhang H, Zhou H, Sun J, Zong C. Effects of Isocyanate Structure on the Properties of Polyurethane: Synthesis, Performance, and Self-Healing Characteristics. Polymers (Basel) 2024; 16:3045. [PMID: 39518254 PMCID: PMC11548432 DOI: 10.3390/polym16213045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Polyurethane (PU) plays a critical role in elastomers, adhesives, and self-healing materials. We selected the most commonly used aromatic isocyanates, 4,4'-methylene diphenyl diisocyanate (MDI) and tolylene-2,4-diisocyanate (TDI), and the most commonly used aliphatic isocyanates, hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), and dicyclohexylmethane-4,4'-diisocyanate (HMDI), as raw materials, combined with polytetramethylene ether glycol (PTMG) and 1,4-butanediol (BDO) to successfully synthesize five PU materials. The effects of isocyanate structure on polymerization rate, hydrogen bonding, thermal properties, phase separation, wettability, self-healing performance, adhesion, and mechanical properties were systematically investigated. The results show that isocyanates with higher symmetry facilitate hydrogen bonding, but excessive flexibility and crystallinity may inhibit its formation. MDI-based PU exhibits the highest hydrogen bonding index (HBI) of 4.10, along with the most distinct phase separation and the highest tensile strength of 23.4 MPa. HMDI-based PU demonstrates the best adhesion properties, with the highest lap shear strength of 7.9 MPa, and also exhibits excellent scratch healing ability. IPDI-based PU shows good self-healing performance, recovering 88.7% of its original tensile strength and 90.6% of its original lap shear strength after heating at 80 °C for 24 h. Furthermore, all the samples can be reprocessed by melt or solution methods, showing excellent recyclability.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Chengzhong Zong
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (H.W.)
| |
Collapse
|
3
|
Wu W, Zhao G, Chu L, Wu J, Miao K, Shen L, Li X, Bao N. Janus GO/BTA/PMMA Microcapsules for Biobased Self-Healing Anticorrosion Coatings with Ultrahigh Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53033-53041. [PMID: 39297963 DOI: 10.1021/acsami.4c13505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The giant reduction of the barrier properties due to self-healing microcapsules and the lack of real-time protection during the healing remained the main challenges in self-healing anticorrosion coatings. Herein, a facile strategy using Janus graphene oxide (GO) as a dense and flexible shell has been proposed to synergistically solve these challenges. Benzotriazole (BTA) was used to synthesize Janus GO at the oil-water interface, and Janus GO/BTA/poly(methyl methacrylate) microcapsules were prepared. Energy-dispersive X-ray spectroscopy, Fourier infrared spectroscopy, Raman spectroscopy, and ultraviolet spectrophotometer analysis confirmed the formation of a Janus GO structure with one surface hydrophilic and the other hydrophobic. The surface morphology of J-GO-capsules with a high GO coverage rate was observed by scanning electron microscopy. The high biobased content coating containing J-GO-capsules showed a low-frequency impedance value above 1010 as assessed by electrochemical impedance spectroscopy after being immersed in 3.5 wt % NaCl solution for 60 days. In addition, the low-frequency impedance values of the coating were maintained after being scratched due to the self-healing properties of the J-GO-capsules as well as the real-time protective effect of the BTA. Biobased coatings with the best overall properties among all of the self-healing anticorrosion coatings were prepared.
Collapse
Affiliation(s)
- Wentao Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, People's Republic of China
| | - Gaojie Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, People's Republic of China
| | - Liangyong Chu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, People's Republic of China
| | - Jian Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, People's Republic of China
| | - Kexin Miao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, People's Republic of China
| | - Liming Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, People's Republic of China
| | - Xiaobao Li
- College of Chemical Engineering, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, Jiangsu, People's Republic of China
| | - Ningzhong Bao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, People's Republic of China
| |
Collapse
|
4
|
Zou H, Li S, Wang Z, Wei Z, Hu R, Wang T, Zhao F, Zhang Y, Yang Y. Strong and Healable Elastomers with Photothermal-Stimulus Dynamic Nanonetworks Enabled by Subnano Ultrafine MoO 3-x Nanowires. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48363-48373. [PMID: 39221601 DOI: 10.1021/acsami.4c11724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
One-dimensional nanomaterials have become one of the most available nanoreinforcing agents for developing next-generation high-performance functional self-healing composites owing to their unique structural characteristics and surface electron structure. However, nanoscale control, structural regulation, and crystal growth are still enormous challenges in the synthesis of specific one-dimensional nanomaterials. Here, oxygen-defective MoO3-x nanowires with abundant surface dynamic bonding were successfully synthesized as novel nanofillers and photothermal response agents combined with a polyurethane matrix to construct composite elastomers, thus achieving mechanically enhanced and self-healing properties. Benefiting from the surface plasmon resonance of the MoO3-x nanowires and interfacial multiple dynamic bonding interactions, the composite elastomers demonstrated strong mechanical performance (with a strength of 31.45 MPa and elongation of 1167.73%) and ultrafast photothermal toughness self-healing performance (20 s and an efficiency of 94.34%). The introduction of MoO3-x nanowires allows the construction of unique three-dimensional cross-linked nanonetworks that can move and regulate interfacial dynamic interactions under 808 nm infrared laser stimulation, resulting in controlled mechanical and healing performance. Therefore, such special elastomers with strong photothermal responses and mechanical properties are expected to be useful in next-generation biological antibacterial materials, wearable devices, and artificial muscles.
Collapse
Affiliation(s)
- Hongli Zou
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P.R. China
| | - Sijia Li
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P.R. China
| | - Zhuo Wang
- National Key Laboratory of Special Vehicle Design and Manufacturing Integration Technology, Baotou 014000, Inner Mongolia, P.R. China
| | - Zehui Wei
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P.R. China
| | - Renquan Hu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P.R. China
| | - Teng Wang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P.R. China
| | - Fu Zhao
- National Key Laboratory of Special Vehicle Design and Manufacturing Integration Technology, Baotou 014000, Inner Mongolia, P.R. China
| | - Yaoming Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, P.R. China
| | - Yong Yang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P.R. China
| |
Collapse
|
5
|
Wu Z, Dong J, Guo H, Shang R, Qin X, Xia Y, Li X, Zhao X, Ji C, Zhang Q. Robust, Self-Healing, and Multi-Use Poly(Urethane-Urea-Imide) Elastomer as a Durable Adhesive for Thermal Interface Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401815. [PMID: 38573922 DOI: 10.1002/smll.202401815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/20/2024] [Indexed: 04/06/2024]
Abstract
Currently, research on thermal interface materials (TIMs) is primarily focused on enhancing thermal conductivity. However, strong adhesion and multifunctionality are also important characteristics for TIMs when pursing more stable interface heat conduction. Herein, a novel poly(urethane-urea-imide) (PUUI) elastomer containing abundant dynamic hydrogen bonds network and reversible disulfide linkages is successfully synthesized for application as a TIM matrix. The PUUI can self-adapt to the metal substrate surface at moderate temperatures (80 °C) and demonstrates a high adhesion strength of up to 7.39 MPa on aluminum substrates attributed its noncovalent interactions and strong intrinsic cohesion. Additionally, the PUUI displays efficient self-healing capability, which can restore 94% of its original mechanical properties after self-healing for 6 h at room temperature. Furthermore, PUUI composited with aluminum nitride and liquid metal hybrid fillers demonstrates a high thermal conductivity of 3.87 W m-1 K-1 while maintaining remarkable self-healing capability and adhesion. When used as an adhesive-type TIM, it achieves a low thermal contact resistance of 22.1 mm2 K W-1 at zero pressure, only 16.7% of that of commercial thermal pads. This study is expected to break the current research paradigm of TIMs and offers new insights for the development of advanced, reliable, and sustainable TIMs.
Collapse
Affiliation(s)
- Zhiqiang Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Jie Dong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Han Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Rui Shang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiuzhi Qin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yanfei Xia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiuting Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xin Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Chengchang Ji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Qinghua Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
6
|
Yimyai T, Crespy D, Rohwerder M. Corrosion-Responsive Self-Healing Coatings. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300101. [PMID: 36939547 DOI: 10.1002/adma.202300101] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Organic coatings are one of the most popular and powerful strategies for protecting metals against corrosion. They can be applied in different ways, such as by dipping, spraying, electrophoresis, casting, painting, or flow coating. They offer great flexibility of material designs and cost effectiveness. Moreover, self-healing has evolved as a new research topic for protective organic coatings in the last two decades. Responsive materials play a crucial role in this new research field. However, for targeting the development of high-performance self-healing coatings for corrosion protection, it is not sufficient just to focus on smart responsive materials and suitable active agents for self-healing. A better understanding of how coatings can react on different stimuli induced by corrosion, how these stimuli can spread in the coating, and how the released agents can reach the corroding defect is also of high importance. Such knowledge would allow the design of coatings that are optimized for specific applications. Herein, the requirements and possibilities from the corrosion and synthesis perspectives for designing materials for preparing self-healing coatings for corrosion protection are discussed.
Collapse
Affiliation(s)
- Tiwa Yimyai
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Michael Rohwerder
- Max-Planck-Institut für Eisenforschung GmbH, 40237, Düsseldorf, Germany
| |
Collapse
|
7
|
Zhang Z, Jiang X, Ma Y, Lu X, Jiang Z. High-Performance Branched Polymer Elastomer Based on a Topological Network Structure and Dynamic Bonding. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43048-43059. [PMID: 37647234 DOI: 10.1021/acsami.3c11027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
High performance has always been the research focus of elastomers. However, there are inherent conflicts among properties of elastomers, such as strength and toughness, strength and damping performance, strength and self-healing ability, etc. Herein, first, we synthesized a unique structure of the dangling chain containing proton donors and receptors. Then, we design and fabricate a kind of high-performance elastomer with a gradient distribution of a dangling chain and a dynamic bond structure. The dangling chains of different lengths intertwine with each other and self-assemble to form a "dense accumulation" structure driven by hydrogen bonds, and the elastomer exhibits special micro/nano scale aggregated states and microphase separation. The "dense accumulation" structure plays a vital role in the increase of mechanical properties. Meanwhile, under the joint action of a dangling chain and a dynamic bond, the damping performance and self-healing performance of the elastomer are greatly enhanced. High strength (27.5 MPa), toughness (121.9 MJ·m-3), 94.8% healing efficiency and outstanding damping performance (tan δ ≥ 0.4, high damping temperature range up to 144 °C) are simultaneously achieved beyond the current state-of-the-art. This topoarchitected polymer with a gradient distribution of dangling chains successfully solves the defects of conventional branched polymers in deteriorating their mechanical properties. This material design provides a new strategy for the development of high-performance structural and functional integrated elastomers.
Collapse
Affiliation(s)
- Zhenpeng Zhang
- South China University of Technology, Guangzhou 501641, China
| | - Xiaolin Jiang
- South China University of Technology, Guangzhou 501641, China
| | - Yuanhao Ma
- South China University of Technology, Guangzhou 501641, China
| | - Xun Lu
- South China University of Technology, Guangzhou 501641, China
| | - Zhijie Jiang
- South China University of Technology, Guangzhou 501641, China
| |
Collapse
|
8
|
Wang Y, Ge-Zhang S, Mu P, Wang X, Li S, Qiao L, Mu H. Advances in Sol-Gel-Based Superhydrophobic Coatings for Wood: A Review. Int J Mol Sci 2023; 24:ijms24119675. [PMID: 37298624 DOI: 10.3390/ijms24119675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
As the focus of architecture, furniture, and other fields, wood has attracted extensive attention for its many advantages, such as environmental friendliness and excellent mechanical properties. Inspired by the wetting model of natural lotus leaves, researchers prepared superhydrophobic coatings with strong mechanical properties and good durability on the modified wood surface. The prepared superhydrophobic coating has achieved functions such as oil-water separation and self-cleaning. At present, some methods such as the sol-gel method, the etching method, graft copolymerization, and the layer-by-layer self-assembly method can be used to prepare superhydrophobic surfaces, which are widely used in biology, the textile industry, national defense, the military industry, and many other fields. However, most methods for preparing superhydrophobic coatings on wood surfaces are limited by reaction conditions and process control, with low coating preparation efficiency and insufficiently fine nanostructures. The sol-gel process is suitable for large-scale industrial production due to its simple preparation method, easy process control, and low cost. In this paper, the research progress on wood superhydrophobic coatings is summarized. Taking the sol-gel method with silicide as an example, the preparation methods of superhydrophobic coatings on wood surfaces under different acid-base catalysis processes are discussed in detail. The latest progress in the preparation of superhydrophobic coatings by the sol-gel method at home and abroad is reviewed, and the future development of superhydrophobic surfaces is prospected.
Collapse
Affiliation(s)
- Yudong Wang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Shangjie Ge-Zhang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Pingxuan Mu
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Xueqing Wang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Shaoyi Li
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Lingling Qiao
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Hongbo Mu
- College of Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
9
|
Wei X, Niu X. Recent Advances in Superhydrophobic Surfaces and Applications on Wood. Polymers (Basel) 2023; 15:polym15071682. [PMID: 37050296 PMCID: PMC10097333 DOI: 10.3390/polym15071682] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/25/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Superhydrophobic substances were favored in wood protection. Superhydrophobic treatment of wood is of great significance for improving the service life of wood and expanding its application fields, such as improving dimensional stability, durability, UV stability, and reducing wetting. The superhydrophobic phenomenon is attributed to the interaction of micro/nano hierarchical structure and low surface energy substances of the wood surface. This is the common method for obtaining superhydrophobic wood. The article introduces the common preparation methods of superhydrophobic wood material coatings and their mechanisms. These techniques include lithography, sol–gel methods, graft copolymerization, chemical vapor deposition, etc. The latest research progress of superhydrophobic wood material coatings application at domestic and overseas is reviewed, and the current status of superhydrophobic coating application in wood materials and construction is summarized. Finally, superhydrophobic on wood in the field of applied research is presented, and the development trend in the field of functional improvement of wood is foreseen.
Collapse
|
10
|
Yang J, Zhou X, Wen X, Hao G, Xiao L, Zhang G, Jiang W. Molecular Engineering of Binder for Improving the Mechanical Properties and Recyclability of Energetic Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1087. [PMID: 36985981 PMCID: PMC10051099 DOI: 10.3390/nano13061087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Mechanical properties and reprocessing properties are of great significance to the serviceability and recyclability of energetic composites. However, the mechanical robustness of mechanical properties and dynamic adaptability related to reprocessing properties are inherent contradictions, which are difficult to optimize at the same time. This paper proposed a novel molecular strategy. Multiple hydrogen bonds derived from acyl semicarbazides could construct dense hydrogen bonding arrays, strengthening physical cross-linking networks. The zigzag structure was used to break the regular arrangement formed by the tight hydrogen bonding arrays, so as to improve the dynamic adaptability of the polymer networks. The disulfide exchange reaction further excited the polymer chains to form a new "topological entanglement", thus improving the reprocessing performance. The designed binder (D2000-ADH-SS) and nano-Al were prepared as energetic composites. Compared with the commercial binder, D2000-ADH-SS simultaneously optimized the strength and toughness of energetic composites. Due to the excellent dynamic adaptability of the binder, the tensile strength and toughness of the energetic composites still maintained the initial values, 96.69% and 92.89%, respectively, even after three hot-pressing cycles. The proposed design strategy provides ideas for the design and preparation of recyclable composites and is expected to promote the future application in energetic composites.
Collapse
Affiliation(s)
- Jing Yang
- National Special Superfine Powder Engineering Technology Research Center, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xin Zhou
- National Special Superfine Powder Engineering Technology Research Center, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaomu Wen
- Science and Technology on Transient Impact Laboratory, Research Institute of China Ordnance Industries, Beijing 102202, China
| | - Gazi Hao
- National Special Superfine Powder Engineering Technology Research Center, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lei Xiao
- National Special Superfine Powder Engineering Technology Research Center, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Guangpu Zhang
- National Special Superfine Powder Engineering Technology Research Center, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wei Jiang
- National Special Superfine Powder Engineering Technology Research Center, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
11
|
Celik N, Sahin F, Ozel SS, Sezer G, Gunaltay N, Ruzi M, Onses MS. Self-Healing of Biocompatible Superhydrophobic Coatings: The Interplay of the Size and Loading of Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3194-3203. [PMID: 36812456 PMCID: PMC9996814 DOI: 10.1021/acs.langmuir.2c02795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The broad application potential of superhydrophobic coatings is limited by the usage of environment-threatening materials and poor durability. The nature-inspired design and fabrication of self-healing coatings is a promising approach for addressing these issues. In this study, we report a fluorine-free and biocompatible superhydrophobic coating that can be thermally healed after abrasion. The coating is composed of silica nanoparticles and carnauba wax, and the self-healing is based on surface enrichment of wax in analogy to the wax secretion in plant leaves. The coating not only exhibits fast self-healing, just in 1 min under moderate heating, but also displays increased water repellency and thermal stability after healing. The rapid self-healing ability of the coating is attributed to the relatively low melting point of carnauba wax and its migration to the surface of the hydrophilic silica nanoparticles. The dependence of self-healing on the size and loading of particles provides insights into the process. Furthermore, the coating exhibits high levels of biocompatibility where the viability of fibroblast L929 cells was ∼90%. The presented approach and insights provide valuable guidelines in the design and fabrication of self-healing superhydrophobic coatings.
Collapse
Affiliation(s)
- Nusret Celik
- ERNAM
− Erciyes University Nanotechnology Application and Research
Center, 38039 Kayseri, Turkey
- Department
of Materials Science and Engineering, Erciyes
University, 38039 Kayseri, Turkey
| | - Furkan Sahin
- ERNAM
− Erciyes University Nanotechnology Application and Research
Center, 38039 Kayseri, Turkey
| | - Sultan Suleyman Ozel
- Department
of Materials Science and Engineering, Erciyes
University, 38039 Kayseri, Turkey
| | - Gulay Sezer
- Department
of Pharmacology, Faculty of Medicine, Erciyes
University, 38039 Kayseri, Turkey
| | - Nail Gunaltay
- ERNAM
− Erciyes University Nanotechnology Application and Research
Center, 38039 Kayseri, Turkey
| | - Mahmut Ruzi
- ERNAM
− Erciyes University Nanotechnology Application and Research
Center, 38039 Kayseri, Turkey
| | - M. Serdar Onses
- ERNAM
− Erciyes University Nanotechnology Application and Research
Center, 38039 Kayseri, Turkey
- Department
of Materials Science and Engineering, Erciyes
University, 38039 Kayseri, Turkey
- UNAM
− National Nanotechnology Research Center, Institute of Materials
Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
12
|
Zhang J, Singh V, Huang W, Mandal P, Tiwari MK. Self-Healing, Robust, Liquid-Repellent Coatings Exploiting the Donor-Acceptor Self-Assembly. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8699-8708. [PMID: 36735767 PMCID: PMC9940105 DOI: 10.1021/acsami.2c20636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Liquid-repellent coatings with rapid self-healing and strong substrate adhesion have tremendous potential for industrial applications, but their formulation is challenging. We exploit synergistic chemistry between donor-acceptor self-assembly units of polyurethane and hydrophobic metal-organic framework (MOF) nanoparticles to overcome this challenge. The nanocomposite features a nanohierarchical morphology with excellent liquid repellence. Using polyurethane as a base polymer, the incorporated donor-acceptor self-assembly enables high strength, excellent self-healing property, and strong adhesion strength on multiple substrates. The interaction mechanism of donor-acceptor self-assembly was revealed via density functional theory and infrared spectroscopy. The superhydrophobicity of polyurethane was achieved by introducing alkyl-functionalized MOF nanoparticles and post-application silanization. The combination of the self-healing polymer and nanohierarchical MOF nanoparticles results in self-cleaning capability, resistance to tape peel and high-speed liquid jet impacts, recoverable liquid repellence over a self-healed notch, and low ice adhesion up to 50 icing/deicing cycles. By exploiting the porosity of MOF nanoparticles in our nanocomposites, fluorine-free, slippery liquid-infused porous surfaces with stable, low ice adhesion strengths were also achieved by infusing silicone oil into the coatings.
Collapse
Affiliation(s)
- Jianhui Zhang
- Nanoengineered
Systems Laboratory, UCL Mechanical Engineering, University College London, London WC1E 7JE, U.K.
- Wellcome/EPSRC
Centre for Interventional and Surgical Sciences, University College London, London W1W 7TS, U.K.
| | - Vikramjeet Singh
- Nanoengineered
Systems Laboratory, UCL Mechanical Engineering, University College London, London WC1E 7JE, U.K.
- Wellcome/EPSRC
Centre for Interventional and Surgical Sciences, University College London, London W1W 7TS, U.K.
| | - Wei Huang
- Nanoengineered
Systems Laboratory, UCL Mechanical Engineering, University College London, London WC1E 7JE, U.K.
- Wellcome/EPSRC
Centre for Interventional and Surgical Sciences, University College London, London W1W 7TS, U.K.
| | - Priya Mandal
- Nanoengineered
Systems Laboratory, UCL Mechanical Engineering, University College London, London WC1E 7JE, U.K.
- Wellcome/EPSRC
Centre for Interventional and Surgical Sciences, University College London, London W1W 7TS, U.K.
| | - Manish K. Tiwari
- Nanoengineered
Systems Laboratory, UCL Mechanical Engineering, University College London, London WC1E 7JE, U.K.
- Wellcome/EPSRC
Centre for Interventional and Surgical Sciences, University College London, London W1W 7TS, U.K.
| |
Collapse
|
13
|
Kim Y, Phon R, Jeong H, Kim Y, Lim S. Thermal spiral inductor using 3D printed shape memory kirigami. Sci Rep 2022; 12:22246. [PMID: 36564548 PMCID: PMC9789104 DOI: 10.1038/s41598-022-26923-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Spiral inductors are required to realise high inductance in radio frequency (RF) circuits. Although their fabrication by using micro-electrical-mechanical systems, thin films, actuators, etc., has received considerable research attention, current approaches are both complex and expensive. In this study, we designed and fabricated a thermal spiral inductor by using a three-dimensional (3D) printed shape-memory polymer (SMP). The proposed inductor was inspired by kirigami geometry whereby a two-dimensional (2D) planar geometric shape could be transformed into a 3D spiral one to change the inductance by heating and manually transform. Mechanical and electromagnetic analyses of the spiral inductor design was conducted. Hence, in contrast with the current processes used to manufacture spiral inductors, ours can be realised via a single facile fabrication step.
Collapse
Affiliation(s)
- Yelim Kim
- grid.254224.70000 0001 0789 9563School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974 Republic of Korea
| | - Ratanak Phon
- grid.254224.70000 0001 0789 9563School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974 Republic of Korea
| | - Heijun Jeong
- grid.254224.70000 0001 0789 9563School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974 Republic of Korea
| | - Yeonju Kim
- grid.254224.70000 0001 0789 9563School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974 Republic of Korea
| | - Sungjoon Lim
- grid.254224.70000 0001 0789 9563School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974 Republic of Korea
| |
Collapse
|