1
|
Ai Y, Yangnan J, He J, Ohtsuka Y, Sakai M, Seki T, Yamanaka T, Tarutani N, Katagiri K, Takeoka Y. Influence of Sodium Ions and Carbon Black on the Formation and Structural Color of Photonic Balls by Silica Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39264800 DOI: 10.1021/acs.langmuir.4c02283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
In this study, photonic balls─spherical aggregates of submicrometer-sized silica particles with uniform particle size─were investigated as structural colored materials. The structural color of these photonic balls is influenced by the ordered arrangement of the silica particles. The research focused on how the addition of electrolytes, specifically NaCl, affects the formation of photonic balls to achieve the desired structural color. Without NaCl, the photonic balls formed onion-shaped colloidal crystals. At NaCl concentrations above 0.006 mol/L, the particles aggregated into short-range ordered structures. When the concentration exceeded 0.05 mol/L, the aggregates lost their spherical shape. The study also explored the addition of carbon black (CB), a water-dispersible material due to its surface charge. The findings revealed that NaCl induced the phase separation between the charged silica particles and CB, resulting in Janus-shaped photonic balls─one side exhibiting structural color and the other side appearing black due to the presence of CB. Changing the silica particle size altered the hues of these Janus-shaped photonic balls, though they appeared uniformly colored to the naked eye. While this study did not specifically examine the applications of Janus-shaped photonic balls composed of silica particles and CB, CB is known for its ability to absorb near-infrared radiation and convert it into heat as well as its conductive properties. Silica, on the other hand, has a low thermal conductivity and acts as an electrical insulator. The structurally colored Janus-shaped photonic balls created in this study may serve as pigments in applications requiring anisotropic heat generation and electrical conduction. Additionally, the study's findings suggest the potential for creating various types of Janus-shaped photonic balls from materials with differing densities.
Collapse
Affiliation(s)
- Yuwen Ai
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Jiang Yangnan
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Jialei He
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yumiko Ohtsuka
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Miki Sakai
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Takahiro Seki
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Takahiro Yamanaka
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Naoki Tarutani
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Kiyofumi Katagiri
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Yukikazu Takeoka
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
2
|
Zhang G, Xiao M. Enhancing color saturation in photonic glasses through optimized absorption. OPTICS EXPRESS 2024; 32:20432-20448. [PMID: 38859425 DOI: 10.1364/oe.516278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/01/2024] [Indexed: 06/12/2024]
Abstract
Photonic glasses, isotropically assembled nanoparticles with short-range correlation, can produce angle independent structural colors. They show broader reflectance spectra and lower saturated colors, compared to photonic crystals. Low color saturation creates barriers for photonic glasses to be used for coatings, cosmetics, and colors. Broadband absorbing materials are commonly used to absorb incoherently scattered light to enhance the saturation. However, there is limited understanding on how the absorption quantitatively affects the colors of photonic glasses. To this end, we here use a validated Monte Carlo-based multiple scattering model to investigate how absorption impacts the reflectance spectra in photonic glasses. We show that the color saturation can be maximized with an optimal level of absorption regardless of sample thickness or refractive index contrast between particles and matrix. We quantitatively demonstrate that the multiple scattering is largely reduced with the optimal absorption level and the reflectance is dominantly contributed by the single scattering. The optimal absorption occurs when the sample absorption mean free path is comparable to the transport mean free path, which offers a guidance on how much absorbing material is needed for creating highly saturated photonic glasses. This work will not only pave ways for pushing applications of angle-independent structural colors, but also improve our understanding of light scattering and absorption in short-range correlated disordered systems.
Collapse
|
3
|
Winhard B, Gomez-Gomez A, Maragno LG, Gomes DR, Furlan KP. Achieving High-Temperature Stable Structural Color through Nanostructuring in Polymer-Derived Ceramics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22379-22390. [PMID: 38636939 PMCID: PMC11071046 DOI: 10.1021/acsami.4c01047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/20/2024]
Abstract
Structural colors offer a myriad of advantages over conventional pigment-based colors, which often rely on toxic chemical substances that are prone to UV degradation. To take advantage of these benefits in demanding environments, there is growing interest in producing structural colors from ceramics. Polymer-derived ceramics (PDCs) emerge as a compelling choice, presenting two distinct advantages: their enhanced shape ability in their polymeric state associated with impressive temperature resistance once converted to ceramics. This study pioneers the fabrication of noniridescent structural colors from silicon oxycarbide (SiOC) PDC, enabled by the nanostructuring of an inverse photonic glass within the PDC material. This design, a functionally graded material with an inverse photonic glass (FGM-PhG) structure, leverages the innate light-absorbing properties of SiOC, yielding a vivid structural color that maintains its saturation even in white surroundings. This study elucidates the process-structure-properties relationship for the obtained structural colors by investigating each layer of the functionally graded material (FGM) in a stepwise coating deposition process. To further emphasize the exceptional processing flexibility of PDCs, the three-step process is later transferred to an additive manufacturing approach. Finally, the FGM-PhG structural colors are demonstrated to have remarkable thermal stability up to 1000 °C for 100 h, possibly making them the most thermally stable ceramic structural colors to date.
Collapse
Affiliation(s)
- Benedikt
F. Winhard
- Hamburg University of Technology,
Institute of Advanced Ceramics, Integrated
Materials Systems Group, Denickestraße 15, 21073 Hamburg, Germany
| | - Alberto Gomez-Gomez
- Hamburg University of Technology,
Institute of Advanced Ceramics, Integrated
Materials Systems Group, Denickestraße 15, 21073 Hamburg, Germany
| | - Laura G. Maragno
- Hamburg University of Technology,
Institute of Advanced Ceramics, Integrated
Materials Systems Group, Denickestraße 15, 21073 Hamburg, Germany
| | - Diego Ribas Gomes
- Hamburg University of Technology,
Institute of Advanced Ceramics, Integrated
Materials Systems Group, Denickestraße 15, 21073 Hamburg, Germany
| | - Kaline P. Furlan
- Hamburg University of Technology,
Institute of Advanced Ceramics, Integrated
Materials Systems Group, Denickestraße 15, 21073 Hamburg, Germany
| |
Collapse
|
4
|
Miyake D, He J, Asai F, Hara M, Seki T, Nishimura SN, Tanaka M, Takeoka Y. Optically Transparent and Color-Stable Elastomer with Structural Coloration under Elongation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38033265 DOI: 10.1021/acs.langmuir.3c02442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Optically transparent and colored elastomers with high toughness are expected to play an important role in the construction of advanced medical materials, wearable displays, and soft robots. In this study, we found that composite elastomers consisting of amorphous SiO2 particles homogeneously dispersed in high concentrations within a biocompatible acrylic polymer network exhibit optical transparency and bright structural colors. In the composite elastomers, the system in which the SiO2 particles form a colloidal amorphous array hardly changes its structural color hue despite deformation due to elongation. Furthermore, the composite elastomer of the SiO2 particles with the acrylic polymer network also results in high mechanical toughness. In summary, we have shown that the elastomer that exhibits fade-resistant structural coloration formed from safe materials can combine stable coloration and mechanical strength independent of their shape. This is expected to have new potential in future technologies to support our daily life.
Collapse
Affiliation(s)
- Daiki Miyake
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Nagoya 464-8603, Japan
| | - Jialei He
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Nagoya 464-8603, Japan
| | - Fumio Asai
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Nagoya 464-8603, Japan
- Research & Development Center, UNITIKA LTD., Kyoto 611-0021, Japan
| | - Mitsuo Hara
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Nagoya 464-8603, Japan
| | - Takahiro Seki
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Nagoya 464-8603, Japan
| | - Shin-Nosuke Nishimura
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Institute for Materials Chemistry and Engineering, Doshisha University, 1-3 Miyakodani, Tatara 610-0394, Kyotanabe, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yukikazu Takeoka
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Nagoya 464-8603, Japan
- Research Center for Crystalline Materials Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute of Materials Innovation, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|