1
|
Yuan Z, Yin H, Zheng M, Chen X, Peng W, Zhou H, Xing J, Wang L, Hu S. Biodegradable, robust, and conductive bacterial cellulose @PPy-P macrofibers as resistive strain sensors for smart textiles. Carbohydr Polym 2025; 349:122963. [PMID: 39638504 DOI: 10.1016/j.carbpol.2024.122963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/25/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024]
Abstract
Fiber-based resistive strain sensors have attracted significant interest in the development of smart wearable devices due to their portability, flexibility, and easy conformability. However, current fiber-based resistive strain sensors mainly composed of metals and nondegradable polymers are not environmentally friendly and have poor mechanical strength. In this work, we examined biodegradable, robust, and conductive macrofibers fabricated through the in situ polymerization of p-toluenesulfonic acid (P-TSA)-doped polypyrrole (PPy) in bacterial cellulose (BC) nanofibers using wet-stretching and wet-twisting methods. The BC/PPy-P macrofibers possessed excellent conductivity (~7.19 S/cm), with superior mechanical properties (~210 MPa tensile strength and 2 GPa Young's modulus). Importantly, the BC/PPy-P microfiber operating as a resistive strain sensor possessed fast response time (15 s) and long-term stability (up to 1000 cycles), which could be used to effectively detect human movements. Moreover, the matrix material BC of BC/PPy-P macrofibers could be completely degraded within 96 h in the cellulase solution, leaving only PPy-P particles that could be recycled for other use. Therefore, the prepared BC/PPy-P microfibers provided a promising strategy for developing green resistive strain sensing fibers, with great potential to design eco-friendly smart fabric for monitoring human movements.
Collapse
Affiliation(s)
- Zaixian Yuan
- School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Hai Yin
- School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Min Zheng
- School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Xiao Chen
- School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Wei Peng
- School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Hongfu Zhou
- School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Jun Xing
- School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Li Wang
- Wuhan Branch of the National Science Library, Chinese Academy of Sciences, Wuhan 430071, China
| | - Sanming Hu
- School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China.
| |
Collapse
|
2
|
Zhao S, Liu D, Yan F. Wearable Resistive-Type Stretchable Strain Sensors: Materials and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413929. [PMID: 39648537 DOI: 10.1002/adma.202413929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/01/2024] [Indexed: 12/10/2024]
Abstract
The rapid advancement of wearable electronics over recent decades has led to the development of stretchable strain sensors, which are essential for accurately detecting and monitoring mechanical deformations. These sensors have widespread applications, including movement detection, structural health monitoring, and human-machine interfaces. Resistive-type sensors have gained significant attention due to their simple design, ease of fabrication, and adaptability to different materials. Their performance, evaluated by metrics like stretchability and sensitivity, is influenced by the choice of strain-sensitive materials. This review offers a comprehensive comparison and evaluation of different materials used in resistive strain sensors, including metal and semiconductor films, low-dimensional materials, intrinsically conductive polymers, and gels. The review also highlights the latest applications of resistive strain sensors in motion detection, healthcare monitoring, and human-machine interfaces by examining device physics and material characteristics. This comparative analysis aims to support the selection, application, and development of resistive strain sensors tailored to specific applications.
Collapse
Affiliation(s)
- Sanqing Zhao
- Department of Applied Physics, Research Center for Organic Electronics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
| | - Dapeng Liu
- Department of Applied Physics, Research Center for Organic Electronics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
| | - Feng Yan
- Department of Applied Physics, Research Center for Organic Electronics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
| |
Collapse
|
3
|
Li X, Gao Y, Nie J, Sun F. Construction of gradient ionogels by self-floatable hyperbranched organosilicon crosslinkers for multi-sensing and wirelessly monitoring physiological signals. J Colloid Interface Sci 2025; 678:703-712. [PMID: 39216397 DOI: 10.1016/j.jcis.2024.08.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Monitoring complex human movements requires the simultaneous detection of strain and pressure, which poses a challenge due to the difficulty in integrating high stretchability and compressive ability into a single material. Herein, a series of hyperbranched polysiloxane crosslinkers (HPSis) with self-floating abilities are designed and synthesized. Taking advantage of the self-floating capabilities of HPSis, ionogels with gradient composition distribution and conductivities are constructed by in situ one-step photopolymerization, and possess satisfactory stretchability, high compressibility and excellent resilience. The gradient-ionogel-based strain sensor exhibits extraordinary pressure sensitivity (19.33 kPa-1), high strain sensitivity (GF reaches 2.5) and temperature sensing ability, enabling the monitoring of the angles and direction of joint movements, transmitting Morse code and wirelessly detecting bioelectrical signals. This study may inspire the design of development of multi-function flexible electronics.
Collapse
Affiliation(s)
- Xuechun Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China; College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yanjing Gao
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jun Nie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China; College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Fang Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China; College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
4
|
Li M, Pu J, Cao Q, Zhao W, Gao Y, Meng T, Chen J, Guan C. Recent advances in hydrogel-based flexible strain sensors for harsh environment applications. Chem Sci 2024:d4sc05295a. [PMID: 39430943 PMCID: PMC11488682 DOI: 10.1039/d4sc05295a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024] Open
Abstract
Flexible strain sensors are broadly investigated in electronic skins and human-machine interaction due to their light weight, high sensitivity, and wide sensing range. Hydrogels with unique three-dimensional network structures are widely used in flexible strain sensors for their exceptional flexibility and adaptability to mechanical deformation. However, hydrogels often suffer from damage, hardening, and collapse under harsh conditions, such as extreme temperatures and humidity levels, which lead to sensor performance degradation or even failure. In addition, the failure mechanism in extreme environments remains unclear. In this review, the performance degradation and failure mechanism of hydrogel flexible strain sensors under various harsh conditions are examined. Subsequently, strategies towards the environmental tolerance of hydrogel flexible strain sensors are summarized. Finally, the current challenges of hydrogel flexible strain sensors in harsh environments are discussed, along with potential directions for future development and applications.
Collapse
Affiliation(s)
- Miaoyu Li
- Institute of Flexible Electronics and Intelligent Textile, Xi'an Polytechnic University Xi'an 710048 P. R. China
- School of Textile Science and Engineering, Xi'an Polytechnic University Xi'an 710048 P. R. China
| | - Jie Pu
- Institute of Flexible Electronics, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Qinghe Cao
- Institute of Flexible Electronics, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Wenbo Zhao
- Institute of Flexible Electronics, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Yong Gao
- Institute of Flexible Electronics, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Ting Meng
- Institute of Flexible Electronics, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Jipeng Chen
- Institute of Flexible Electronics, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Cao Guan
- Institute of Flexible Electronics and Intelligent Textile, Xi'an Polytechnic University Xi'an 710048 P. R. China
- Institute of Flexible Electronics, Northwestern Polytechnical University Xi'an 710072 P. R. China
| |
Collapse
|
5
|
Kumar G, Panda S. Probing the ionic activation enthalpies in anionic polysaccharide xerogel-based single ion conductor for temperature sensing. Carbohydr Polym 2024; 340:122258. [PMID: 38857999 DOI: 10.1016/j.carbpol.2024.122258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 06/12/2024]
Abstract
Ionic charge transport in polymer-based solid electrolytes is significantly affected by thermal perturbations, facilitating the detection of temperature variations. However, the impact of ionic interactions and molecular arrangements in polymeric single-ion conductors (SICs) has not been thoroughly investigated for temperature sensing. By probing the effect of the associated energies for ionic interactions and polymeric rearrangements, the thermal sensing characteristics of alginate have been studied. For the first time, alginate SIC interacting with multivalent ions (viz., Na+, Ca2+ and Fe3+) to form xerogel has been exploited as a temperature-sensing layer by fabricating a xerogel-based ionic thermistor (xIT) as a temperature sensor. The xIT has demonstrated stable functioning from 25 to 70 °C and unveiled enhanced sensing abilities in the physiological state of the human body (35-40 °C), exhibiting a monotonic linear response, high sensitivity (-3.77 % °C-1), and high accuracy (0.1 °C). The sensing characteristic is observed due to the inward ionic flux under thermal and electrical perturbations. The concentration of ionic charge carriers and ionic drift are assumed to be Arrhenius-activated processes. A general microscopic model of ion transport within polysaccharides has been elucidated via hopping mechanisms, and the effects of the associated activation energies on temperature sensitivity have been explained.
Collapse
Affiliation(s)
- Gaurav Kumar
- Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India; National Center for Flexible Electronics, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
| | - Siddhartha Panda
- Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India; Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India; National Center for Flexible Electronics, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India.
| |
Collapse
|
6
|
Zhou Z, Tang W, Xu T, Zhao W, Zhang J, Bai C. Flexible Strain Sensors Based on Thermoplastic Polyurethane Fabricated by Electrospinning: A Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:4793. [PMID: 39123838 PMCID: PMC11314693 DOI: 10.3390/s24154793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Over recent years, thermoplastic polyurethane (TPU) has been widely used as a substrate material for flexible strain sensors due to its remarkable mechanical flexibility and the ease of combining various conductive materials by electrospinning. Many research advances have been made in the preparation of flexible strain sensors with better ductility, higher sensitivity, and wider sensing range by using TPU in combination with various conductive materials through electrospinning. However, there is a lack of reviews that provide a systematic and comprehensive summary and outlook of recent research advances in this area. In this review paper, the working principles of strain sensors and electrospinning technology are initially described. Subsequently, recent advances in strain sensors based on electrospun TPU are tracked and discussed, with a focus on the incorporation of various conductive fillers such as carbonaceous materials, MXene, metallic materials, and conductive polymers. Moreover, the wide range of applications of electrospun TPU flexible strain sensors is thoroughly discussed. Finally, the future prospects and challenges of electrospun TPU flexible strain sensors in various fields are pointed out.
Collapse
Affiliation(s)
| | | | | | | | - Jingjing Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571799, China; (Z.Z.); (W.T.); (T.X.); (W.Z.)
| | - Chuanwu Bai
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571799, China; (Z.Z.); (W.T.); (T.X.); (W.Z.)
| |
Collapse
|
7
|
Qu M, Zhu M, Lv Y, Liu Q, Li J, Gao Y, Sun CL, He J. Hydrophobic TPU/CNTs-ILs Ionogel as a Reliable Multimode and Flexible Wearable Sensor for Motion Monitoring, Information Transfer, and Underwater Sensing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35626-35638. [PMID: 38943621 DOI: 10.1021/acsami.4c08196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Ionogel-based sensors have gained widespread attention in recent years due to their excellent flexibility, biocompatibility, and multifunctionality. However, the adaptation of ionogel-based sensors in extreme environments (such as humid, acidic, alkaline, and salt environments) has rarely been studied. Here, thermoplastic polyurethane/carbon nanotubes-ionic liquids (TPU/CNTs-ILs) ionogels with a complementary sandpaper morphology on the surface were prepared by a solution-casting method with a simple sandpaper as the template, and the hydrophobic flexible TPU/CNTs-ILs ionogel-based sensor was obtained by modification using nanoparticles modified with cetyltrimethoxysilane. The hydrophobicity improves the environmental resistance of the sensor. The ionogel-based sensor exhibits multimode sensing performance and can accurately detect response signals from strain (0-150%), pressure (0.1-1 kPa), and temperature (30-100 °C) stimuli. Most importantly, the hydrophobic TPU/CNTs-ILs ionogel-based sensors can be used not only as wearable strain sensors to monitor human motion signals but also for information transfer, writing recognition systems, and underwater activity monitoring. Thus, the hydrophobic TPU/CNTs-ILs ionogel-based sensor offers a new strategy for wearable electronics, especially for applications in extreme environments.
Collapse
Affiliation(s)
- Mengnan Qu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Menglin Zhu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yanqing Lv
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Qinghua Liu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
- College of Energy, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jiehui Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
- College of Energy, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yuhang Gao
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Cai-Li Sun
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jinmei He
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|
8
|
Xu W, Shen T, Ding Y, Ye H, Wu B, Chen F. Wearable and Recyclable Water-Toleration Sensor Derived from Lipoic Acid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310072. [PMID: 38470190 DOI: 10.1002/smll.202310072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/02/2024] [Indexed: 03/13/2024]
Abstract
Flexible wearable sensors recently have made significant progress in human motion detection and health monitoring. However, most sensors still face challenges in terms of single detection targets, single application environments, and non-recyclability. Lipoic acid (LA) shows a great application prospect in soft materials due to its unique properties. Herein, ionic conducting elastomers (ICEs) based on polymerizable deep eutectic solvents consisting of LA and choline chloride are prepared. In addition to the good mechanical strength, high transparency, ionic conductivity, and self-healing efficiency, the ICEs exhibit swelling-strengthening behavior and enhanced adhesion strength in underwater environments due to the moisture-induced association of poly(LA) hydrophobic chains, thus making it possible for underwater sensing applications, such as underwater communication. As a strain sensor, it exhibits highly sensitive strain response with repeatability and durability, enabling the monitoring of both large and fine human motions, including joint movements, facial expressions, and pulse waves. Furthermore, due to the enhancement of ion mobility at higher temperatures, it also possesses excellent temperature-sensing performance. Notably, the ICEs can be fully recycled and reused as a new strain/temperature sensor through heating. This study provides a novel strategy for enhancing the mechanical strength of poly(LA) and the fabrication of multifunctional sensors.
Collapse
Affiliation(s)
- Weikun Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Tao Shen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yutong Ding
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Huijian Ye
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Bozhen Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Feng Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
9
|
Ye H, Wu B, Sun S, Wu P. A Solid-Liquid Bicontinuous Fiber with Strain-Insensitive Ionic Conduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402501. [PMID: 38562038 DOI: 10.1002/adma.202402501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Stretchable ionic conductors are crucial for enabling advanced iontronic devices to operate under diverse deformation conditions. However, when employed as interconnects, existing ionic conductors struggle to maintain stable ionic conduction under strain, hindering high-fidelity signal transmission. Here, it is shown that strain-insensitive ionic conduction can be achieved by creating a solid-liquid bicontinuous microstructure. A bicontinuous fiber from polymerization-induced phase separation, which contains a solid elastomer phase interpenetrated by a liquid ion-conducting phase, is fabricated. The spontaneous partitioning of dissolved salts leads to the formation of a robust self-wrinkled interface, fostering the development of highly tortuous ionic channels. Upon stretch, these meandering ionic channels are straightened, effectively enhancing ionic conductivity to counteract the strain effect. Remarkably, the fiber retains highly stable ionic conduction till fracture, with only 7% resistance increase at 200% strain. This approach presents a promising avenue for designing durable ionic cables capable of signal transmission with minimal strain-induced distortion.
Collapse
Affiliation(s)
- Huating Ye
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China
| | - Baohu Wu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) Forschungszentrum Jülich, Lichtenbergstr. 1, 85748, Garching, Germany
| | - Shengtong Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China
| |
Collapse
|
10
|
He Y, Xu X, Xiao S, Wu J, Zhou P, Chen L, Liu H. Research Progress and Application of Multimodal Flexible Sensors for Electronic Skin. ACS Sens 2024; 9:2275-2293. [PMID: 38659386 DOI: 10.1021/acssensors.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In recent years, wearable electronic skin has garnered significant attention due to its broad range of applications in various fields, including personal health monitoring, human motion perception, human-computer interaction, and flexible display. The flexible multimodal sensor, as the core component of electronic skin, can mimic the multistimulus sensing ability of human skin, which is highly significant for the development of the next generation of electronic devices. This paper provides a summary of the latest advancements in multimodal sensors that possess two or more response capabilities (such as force, temperature, humidity, etc.) simultaneously. It explores the relationship between materials and multiple sensing capabilities, focusing on both active materials that are the same and different. The paper also discusses the preparation methods, device structures, and sensing properties of these sensors. Furthermore, it introduces the applications of multimodal sensors in human motion and health monitoring, as well as intelligent robots. Finally, the current limitations and future challenges of multimodal sensors will be presented.
Collapse
Affiliation(s)
- Yin He
- School of Textile Science and Engineering, Tiangong University Tianjin 300387, P. R. China
- Institute of Smart Wearable Electronic Textiles, Tiangong University Tianjin 300387, P. R. China
- Yi mai Artificial Intelligence Medical Technology, Tianjin 300384, China
| | - Xiaoxuan Xu
- School of Textile Science and Engineering, Tiangong University Tianjin 300387, P. R. China
- Institute of Smart Wearable Electronic Textiles, Tiangong University Tianjin 300387, P. R. China
| | - Shuang Xiao
- School of Textile Science and Engineering, Tiangong University Tianjin 300387, P. R. China
- Institute of Smart Wearable Electronic Textiles, Tiangong University Tianjin 300387, P. R. China
- Xinxing Cathay (Shanghai) Engineering Science and Technology Research Institute Co., Ltd., Shanghai 201400, China
| | - Junxian Wu
- School of Textile Science and Engineering, Tiangong University Tianjin 300387, P. R. China
- Institute of Smart Wearable Electronic Textiles, Tiangong University Tianjin 300387, P. R. China
- Winner Medical (Wuhan) Co., Ltd., Wuhan 430415, Hubei province, China
| | - Peng Zhou
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Yi mai Artificial Intelligence Medical Technology, Tianjin 300384, China
| | - Li Chen
- School of Textile Science and Engineering, Tiangong University Tianjin 300387, P. R. China
- Institute of Smart Wearable Electronic Textiles, Tiangong University Tianjin 300387, P. R. China
| | - Hao Liu
- School of Textile Science and Engineering, Tiangong University Tianjin 300387, P. R. China
- Institute of Smart Wearable Electronic Textiles, Tiangong University Tianjin 300387, P. R. China
| |
Collapse
|
11
|
Zhao Z, Yang C, Li D. Skin Electrodes Based on TPU Fiber Scaffolds with Conductive Nanocomposites with Stretchability, Breathability, and Washability. MICROMACHINES 2024; 15:598. [PMID: 38793171 PMCID: PMC11122800 DOI: 10.3390/mi15050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024]
Abstract
In the context of an aging population and escalating work pressures, cardiovascular diseases pose increasing health risks. Electrocardiogram (ECG) monitoring presents a preventive tool, but conventional devices often compromise comfort. This study proposes an approach using Ag NW/TPU composites for flexible and breathable epidermal electronics. In this new structure, TPU fibers are used to support Ag NWs/TPU nanocomposites. The TPU fiber-reinforced Ag NW/TPU (TFRAT) nanocomposites exhibit excellent conductivity, stretchability, and electromechanical durability. The composite ensures high steam permeability, maintaining stable electrical performance after washing cycles. Employing this technology, a flexible ECG detection system is developed, augmented with a convolutional neural network (CNN) for automated signal analysis. The experimental results demonstrate the system's reliability in capturing physiological signals. Additionally, a CNN model trained on ECG data achieves over 99% accuracy in diagnosing arrhythmias. This study presents TFRAT as a promising solution for wearable electronics, offering both comfort and functionality in long-term epidermal applications, with implications for healthcare and beyond.
Collapse
Affiliation(s)
| | - Chaopeng Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 5340, Xiping Road, Tianjin 300130, China;
| | - Dongchan Li
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 5340, Xiping Road, Tianjin 300130, China;
| |
Collapse
|
12
|
Feng J, Ao H, Cao P, Yang T, Xing B. Flexible tactile sensors with interlocking serrated structures based on stretchable multiwalled carbon nanotube/silver nanowire/silicone rubber composites. RSC Adv 2024; 14:13934-13943. [PMID: 38686300 PMCID: PMC11056684 DOI: 10.1039/d4ra00381k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024] Open
Abstract
Flexible tactile sensors have attracted significant interest because of their application scope in the fields of biomedicine, motion detection, and human-computer interaction. However, the development of tactile sensors with high sensitivity and flexibility remains a critical challenge. This study develops a patterned, stretchable, and fully elastomeric multiwalled carbon nanotube (MWCNT)/silver nanowire (Ag NW)/silicone rubber (SR) composite. The addition of Ag NWs to MWCNTs enhances the transmission path of the conductive network, yielding a CNT/Ag NW/SR composite with a sensitivity coefficient of 40. This characteristic renders it suitable for use as a piezoresistive sensing material. The interlocking sawtooth structure can convert the mechanical stimuli of the sensor to the tensile strain of the composite, thereby enhancing its sensitivity and flexibility. Experimental results indicate that the developed tactile sensor exhibited a sensitivity of 2.82 N-1 at 0-0.5 N and 1.51 N-1 at 0.5-2 N. These haptic sensors also demonstrate good dynamic response, repeatability, and long life. Furthermore, experimental results show that these haptic sensors exhibit high reproducibility, fast dynamic response, and good mechanical and electrical stability. Because of these exceptional properties, the as-prepared sensor can be applied in the development of smart robots, prosthetics, and wearable devices.
Collapse
Affiliation(s)
- Junyan Feng
- College of Mechanical and Electronic Engineering, Jiaxing Nanhu University Jiaxing 314001 China
| | - Hezheng Ao
- College of Mechanical Engineering, Zhejiang University of Technology Hangzhou 310014 Zhejiang China
| | - Peng Cao
- College of Mechanical Engineering, Zhejiang University of Technology Hangzhou 310014 Zhejiang China
| | - Tao Yang
- College of Mechanical Engineering, Zhejiang University of Technology Hangzhou 310014 Zhejiang China
| | - Bo Xing
- College of Information Science and Engineering, Jiaxing University Jiaxing 314000 China
| |
Collapse
|
13
|
Sun S, Yuan R, Ling S, Zhou T, Wu Z, Fu M, He H, Li X, Zhang C. Self-Healable, Self-Adhesive and Degradable MXene-Based Multifunctional Hydrogel for Flexible Epidermal Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7826-7837. [PMID: 38301169 DOI: 10.1021/acsami.3c17605] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Conductive hydrogels have garnered significant interest in the realm of wearable flexible sensors due to their close resemblance to human tissue, wearability, and precise signal acquisition capabilities. However, the concurrent attainment of an epidermal hydrogel sensor incorporating reliable self-healing capabilities, biodegradability, robust adhesiveness, and the ability to precisely capture subtle electrophysiological signals poses a daunting and intricate challenge. Herein, an innovative MXene-based composite hydrogel (PBM hydrogel) with exceptional self-healing, self-adhesive, and versatile functionality is engineered through the integration of conductive MXene nanosheets into a well-structured poly(vinyl alcohol) (PVA) and bacterial cellulose (BC) hydrogel three-dimensional (3D) network, utilizing multiple dynamic cross-linking synergistic repeated freeze-thaw strategy. The hydrogel harnesses the presence of dynamically reversible borax ester bonds and multiple hydrogen bonds between its constituents, endowing it with rapid self-healing efficiency (97.8%) and formidable self-adhesive capability. The assembled PBM hydrogel epidermal sensor possesses a rapid response time (10 ms) and exhibits versatility in detecting diverse external stimuli and human movements such as vocalization, handwriting, joint motion, Morse code signals, and even monitoring infusion status. Additionally, the PBM hydrogel sensor offers the added advantage of swift degradation in phosphate-buffered saline solution (within a span of 56 days) and H2O2 solution (in just 53 min), maintaining an eco-friendly profile devoid of any environmental pollution. This work lays the groundwork for possible uses in electronic skins, interactions between humans and machines, and the monitoring of individualized healthcare.
Collapse
Affiliation(s)
- Shuxian Sun
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, P. R. China
| | - Ruoxin Yuan
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, P. R. China
| | - Shangwen Ling
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, P. R. China
| | - Tiantian Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, P. R. China
| | - Ziqin Wu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, P. R. China
| | - Mengyuan Fu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, P. R. China
| | - Hanna He
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, P. R. China
| | - Xiaolong Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, P. R. China
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
14
|
Jia J, Peng Y, Ke K, Liu ZY, Yang W. Achieving a Wide-Range Linear Piezoresistive Response in Electrowritten Soft-Hard Polymer Blends via Salami-Inspired Heterostructure Design. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7939-7949. [PMID: 38300761 DOI: 10.1021/acsami.3c18967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Flexible electronics capable of acquiring high-precision signals are in great demand for the development of the internet of things and intelligent artificial. However, it is currently a challenge to simultaneously achieve high signal linearity and sensitivity for stretchable resistive sensors over a wide strain range toward advanced application scenarios requiring high signal accuracy, e.g., sophisticated physiological signal discrimination and displacement measurement. Herein, a film strain sensor, which has an electrical and mechanical dual heterostructure, was fabricated via a direct near-field electrowriting and molecule-guided in situ growth of silver nanoparticles with different concentrations on high-modulus polystyrene domains and low-modulus styrene-butadiene copolymers with a salami-like morphology. Mechanism analyses from both theoretical and experimental investigations reveal that the salami-like heteromodulus microstructure regulates microcrack propagation routes, while the heteroconductivity changes the electron transport paths and amplifies the resistance increase during crack propagation. Therefore, the as-designed strain sensor shows a linear resistive response within ca. 70% strain with a gauge factor of 25, unveiling a simple and scalable strategy for trading off signal linearity and sensitivity over a wide strain range for the fabrication of high-performance linear strain sensors.
Collapse
Affiliation(s)
- Jin Jia
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yan Peng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Kai Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- Key Laboratory of Basalt Fiber and Composites of Sichuan Province, Dazhou, Sichuan 635756, China
| | - Zheng-Ying Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Wei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- Key Laboratory of Basalt Fiber and Composites of Sichuan Province, Dazhou, Sichuan 635756, China
| |
Collapse
|
15
|
Ai J, Wang Q, Li Z, Lu D, Liao S, Qiu Y, Xia X, Wei Q. Highly Stretchable and Fluorescent Visualizable Thermoplastic Polyurethane/Tetraphenylethylene Plied Yarn Strain Sensor with Heterogeneous and Cracked Structure for Human Health Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1428-1438. [PMID: 38150614 DOI: 10.1021/acsami.3c14396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Smart wearable technology has been more and more widely used in monitoring and prewarning of human health and safety, while flexible yarn-based strain sensors have attracted extensive research interest due to their ability to withstand greater external strain and their significant application potential in real-time monitoring of human motion and health signals. Although several strain sensors based on yarn structures have been reported, it remains challenging to strike a balance between high sensitivity and wide strain ranges. At the same time, visual signal sensing is expected to be used in strain sensors thanks to its intuitiveness. In this work, thermoplastic polyurethane (TPU) and tetraphenylethylene (TPE) were wet-spun to fabricate flexible fluorescent fibers used as the substrate of the sensor, followed by the drop addition of polydimethylsiloxane (PDMS) beads and curing to produce a heterogeneous structure, which were further twisted into a plied yarn. Finally, a visualizable flexible yarn strain sensor based on solidified liquid beads and crack structure was obtained by loading polydopamine (PDA) and polypyrrole (PPy) in situ. The sensor exhibited high sensitivity (the GF value was 58.9 at the strain range of 143-184%), a wide working strain range (0-184%), a low monitoring limit (<0.1%), a fast response (58.82 ms), reliable responses at different frequencies, and excellent cycle durability (over 2000 cycles). At the same time, the yarn strain sensor also had excellent photothermal characteristics and a fluorescence crack visualization effect. These attractive advantages enabled yarn strain sensors to accurately monitor various human activities, showing great application potential in health monitoring, personalized medical diagnosis, and other aspects.
Collapse
Affiliation(s)
- Jingwen Ai
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Qingqing Wang
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, P. R. China
| | - Zhuquan Li
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Dongxing Lu
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Shiqin Liao
- Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, P. R. China
| | - Yuyu Qiu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P. R. China
| | - Xin Xia
- College of Textile and Clothing, Xinjiang University, Urumqi 830046, P. R. China
| | - Qufu Wei
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, P. R. China
| |
Collapse
|
16
|
Tan H, Sun L, Huang H, Zhang L, Neisiany RE, Ma X, You Z. Continuous Melt Spinning of Adaptable Covalently Cross-Linked Self-Healing Ionogel Fibers for Multi-Functional Ionotronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310020. [PMID: 38100738 DOI: 10.1002/adma.202310020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/23/2023] [Indexed: 12/17/2023]
Abstract
Stretchable conductive fibers play key roles in electronic textiles, which have substantial improvements in terms of flexibility, breathability, and comfort. Compared to most existing electron-conductive fibers, ion-conductive fibers are usually soft, stretchable, and transparent, leading to increasing attention. However, the integration of desirable functions including high transparency, stretchability, conductivity, solvent resistance, self-healing ability, processability, and recyclability remains a challenge to be addressed. Herein, a new molecular strategy based on dynamic covalent cross-linking networks is developed to enable continuous melt spinning of the ionogel fiber with the aforementioned properties. As a proof of concept, adaptable covalently cross-linked ionogel fibers based on dimethylglyoximeurethane (DOU) groups (DOU-IG fiber) are prepared. The resultant DOU-IG fiber exhibited high transparency (>93%), tensile strength (0.76 MPa), stretchability (784%), and solvent resistance. Owing to the dynamic of DOU groups, the DOU-IG fiber shows high healing performance using near-infrared light. Taking advantage of DOU-IG fibers, multifunctional ionotronics with the integration of several desirable functionalities including sensor, triboelectric nanogenerator, and electroluminescent display are fabricated and used for motion monitoring, energy harvesting, and human-machine interaction. It is believed that these DOU-IG fibers are promising for fabricating the next generation of electronic textiles and other wearable electronics.
Collapse
Affiliation(s)
- Hui Tan
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital Affiliated to Shantou University Medical College, Shenzhen, 518038, China
| | - Lijie Sun
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital Affiliated to Shantou University Medical College, Shenzhen, 518038, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, China
| | - Hongfei Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, China
| | - Luzhi Zhang
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital Affiliated to Shantou University Medical College, Shenzhen, 518038, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, China
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar, 9617976487, Iran
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, Gliwice, 44-100, Poland
| | - Xiaopeng Ma
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital Affiliated to Shantou University Medical College, Shenzhen, 518038, China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, China
| |
Collapse
|
17
|
Gong T, Guo JX, Shao HQ, Jia J, Ke K, Bao RY, Yang W. Linear Strain Sensors via a Spatial Heteromodulus Tricontinuous Structure Design for High-Resolution Recording of Snoring Breath. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56337-56346. [PMID: 37975857 DOI: 10.1021/acsami.3c14672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Porous conductive elastomer composites are very attractive for designing flexible and air-permeable mechanical sensors for healthcare, while it is challenging to achieve a linear and sensitive electromechanical response over a wide strain range for high-resolution recording of physiological activities and body motions. Here, a scalable strategy is developed to construct porous elastomer composites with a bamboo-shaped heteromodulus microstructure in the pores for the fabrication of linear stretchable strain sensors. Such a spatial heteromodulus microstructure is fabricated via phase separation and selective location of high-modulus phase during melt compounding of elastomers and thermoplastics, together with green etching of the water-soluble plastic in the tricontinuous elastomer composites. The bamboo-shaped heteromodulus microstructure is constructed on the pore struts via the fracture of a high-modulus polymer self-assembled on the pore surface and relaxation recovery of the elastomer matrix after prestretching, which blocks the propagation of cut-through microcracks upon stretching. The composites with super low resistance after in situ growth of silver nanoparticles sustain up to 110% tensile strain with a linear and sensitive electromechanical response, demonstrating potential applications in discriminating respiration status and monitoring snoring breath. This work unveils a new approach to fabricate high-performance air-permeable strain sensors in a simple and scalable way.
Collapse
Affiliation(s)
- Tao Gong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Jia-Xing Guo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - He-Qing Shao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Jin Jia
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Kai Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Rui-Ying Bao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Wei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
18
|
Li X, Sun F. An Ultrastretchable Gradient Ionogel Induced by a Self-Floating Strategy for Strain Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37717-37727. [PMID: 37523492 DOI: 10.1021/acsami.3c06894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The fabrication of gradient ionogels for flexible strain sensors remains challenging because of the complex preparation procedures, and it is still difficult to prepare highly stretchable ionogels (strain > 10000%). In this study, a strategy is proposed to successfully fabricate gradient ionogels and apply them to flexible strain sensors by utilizing the self-floating character of the polysiloxane cross-linker. A gradient ionogel with ultrahigh stretchability (>14000%) is prepared via a one-step in situ photopolymerization process of the precursor with long-chain poly(dimethylsiloxane) bis(2-methyl acrylate) (PDMSMA). PDMSMA, which has a self-floating ability and excellent flexibility, induces a gradient composition distribution in the ionogel, thereby endowing the ionogel with superior stretchability and gradient changes in conductivity and adhesivity from the top to the bottom layer. Because of multiple molecular interactions, the bottom surface of the ionogel possesses good resilience and self-adhesion, whereas the top surface, which has a high PDMSMA content, shows a nonsticky performance. As a result, a singular gradient ionogel having both a sticky bottom surface and a nonsticky top surface is achieved. Furthermore, the flexible strain sensor that is created based on these gradient ionogels exhibits high sensitivity (its gauge factor reaching 5.08), a wide detection range (1-1500%), fast response times, and good linearity. Notably, the detection signal remains repeatable over 1000 uninterrupted strain cycles. The fabricated strain sensor was further utilized to monitor joint movements and physiological signals. This work provides a facile strategy for fabricating gradient ionogels and shows their application potential in the field of flexible electronics.
Collapse
Affiliation(s)
- Xuechun Li
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Fang Sun
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Anqing Research Institute, Beijing University of Chemical Technology, Anqing 246000, People's Republic of China
| |
Collapse
|
19
|
Suen JW, Elumalai NK, Debnath S, Mubarak NM, Lim CI, Reddy Moola M, Tan YS, Khalid M. Investigating the Correlation between Electrolyte Concentration and Electrochemical Properties of Ionogels. Molecules 2023; 28:5192. [PMID: 37446854 DOI: 10.3390/molecules28135192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Ionogels are hybrid materials comprising an ionic liquid confined within a polymer matrix. They have garnered significant interest due to their unique properties, such as high ionic conductivity, mechanical stability, and wide electrochemical stability. These properties make ionogels suitable for various applications, including energy storage devices, sensors, and solar cells. However, optimizing the electrochemical performance of ionogels remains a challenge, as the relationship between specific capacitance, ionic conductivity, and electrolyte solution concentration is yet to be fully understood. In this study, we investigate the impact of electrolyte solution concentration on the electrochemical properties of ionogels to identify the correlation for enhanced performance. Our findings demonstrate a clear relationship between the specific capacitance and ionic conductivity of ionogels, which depends on the availability of mobile ions. The reduced number of ions at low electrolyte solution concentrations leads to decreased ionic conductivity and specific capacitance due to the scarcity of a double layer, constraining charge storage capacity. However, at a 31 vol% electrolyte solution concentration, an ample quantity of ions becomes accessible, resulting in increased ionic conductivity and specific capacitance, reaching maximum values of 58 ± 1.48 μS/cm and 45.74 F/g, respectively. Furthermore, the synthesized ionogel demonstrates a wide electrochemical stability of 3.5 V, enabling diverse practical applications. This study provides valuable insights into determining the optimal electrolyte solution concentration for enhancing ionogel electrochemical performance for energy applications. It highlights the impact of ion pairs and aggregates on ion mobility within ionogels, subsequently affecting their resultant electrochemical properties.
Collapse
Affiliation(s)
- Ji Wei Suen
- Department of Mechanical Engineering, Faculty of Engineering and Science, Curtin University, Miri 98009, Malaysia
| | - Naveen Kumar Elumalai
- Energy and Resources Institute, Faculty of Science and Technology, Charles Darwin University, Darwin, NT 0909, Australia
| | - Sujan Debnath
- Department of Mechanical Engineering, Faculty of Engineering and Science, Curtin University, Miri 98009, Malaysia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei
| | - Chye Ing Lim
- Department of Mechanical Engineering, Faculty of Engineering and Science, Curtin University, Miri 98009, Malaysia
| | - Mohan Reddy Moola
- Department of Mechanical Engineering, Faculty of Engineering and Science, Curtin University, Miri 98009, Malaysia
| | - Yee Seng Tan
- Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Petaling Jaya 47500, Malaysia
| | - Mohammad Khalid
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya 47500, Malaysia
- Division of Research and Development, Lovely Professional University, Phagwara 144411, Punjab, India
- School of Applied and Life Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
20
|
Lei D, Xiao Y, Shao L, Xi M, Jiang Y, Li Y. Dual-Stimuli-Responsive and Anti-Freezing Conductive Ionic Hydrogels for Smart Wearable Devices and Optical Display Devices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24175-24185. [PMID: 37186879 DOI: 10.1021/acsami.3c03920] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Stimuli-responsive hydrogels are a class of important materials for the preparation of flexible sensors, but the development of UV/stress dual-responsive ion-conductive hydrogels with excellent tunability for wearable devices remains a major challenge. In this study, a dual-responsive multifunctional ion-conductive hydrogel (PVA-GEL-GL-Mo7) with high tensile strength, good stretchability, outstanding flexibility, and stability is successfully fabricated. The prepared hydrogel has an excellent tensile strength of 2.2 MPa, high tenacity of 5.26 MJ/m3, favorable extensibility (522%), and high transparency of 90%. Importantly, the hydrogels have dual responsiveness to UV light and stress, allowing it to be used as a wearable device while responding differently to the UV intensity of different outdoor environments (hydrogels can show different levels of color when exposed to different light intensities of UV light) and can remain flexible at -50 and 85 °C (sensing at both -25 and 85 °C). Therefore, the hydrogels developed in this study have good prospects in different applications, such as flexible wearable devices, duplicate paper, and dual-responsive interactive devices.
Collapse
Affiliation(s)
- Dongmei Lei
- College of Materials and Textile Engineering & Nanotechnology Research Institute (NRI), Jiaxing University, Jiaxing 314001, Zhejiang, P. R. China
| | - Yunchao Xiao
- College of Materials and Textile Engineering & Nanotechnology Research Institute (NRI), Jiaxing University, Jiaxing 314001, Zhejiang, P. R. China
| | - Leihou Shao
- College of Materials and Textile Engineering & Nanotechnology Research Institute (NRI), Jiaxing University, Jiaxing 314001, Zhejiang, P. R. China
| | - Man Xi
- College of Materials and Textile Engineering & Nanotechnology Research Institute (NRI), Jiaxing University, Jiaxing 314001, Zhejiang, P. R. China
| | - Yang Jiang
- College of Materials and Textile Engineering & Nanotechnology Research Institute (NRI), Jiaxing University, Jiaxing 314001, Zhejiang, P. R. China
| | - Yi Li
- College of Materials and Textile Engineering & Nanotechnology Research Institute (NRI), Jiaxing University, Jiaxing 314001, Zhejiang, P. R. China
| |
Collapse
|
21
|
Gong T, Li ZN, Liang H, Li Y, Tang X, Chen F, Hu Q, Wang H. High-Sensitivity Wearable Sensor Based On a MXene Nanochannel Self-Adhesive Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19349-19361. [PMID: 37036936 DOI: 10.1021/acsami.3c01748] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
To address the shortcomings of traditional filler-based wearable hydrogels, a new type of nanochannel hydrogel sensor is fabricated in this work through a combination of the unique structure of electrospun fiber textile and the properties of a double network hydrogel. Unlike the traditional Ti3C2Tx MXene-based hydrogels, the continuously distributed Ti3C2Tx MXene in the nanochannels of the hydrogel forms a tightly interconnected structure similar to the neuron network. As a result, they have more free space to flip and perform micromovements, which allows one to significantly increase the electrical conductivity and sensitivity of the hydrogel. According to the findings, the Ti3C2Tx MXene nanochannel hydrogel has excellent mechanical properties as well as self-adhesion and antifreezing characteristics. The hydrogel sensor successfully detects different human motions and physiological signals (e.g., low pulse signals) with high stability and sensitivity. Therefore, the proposed Ti3C2Tx MXene-based hydrogel with a unique structure and properties is very promising in the field of flexible wearable devices.
Collapse
Affiliation(s)
- Tao Gong
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Zo Ngyang Li
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Huanyi Liang
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Youming Li
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xia Tang
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Fengyue Chen
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Qinghua Hu
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - HongQing Wang
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| |
Collapse
|
22
|
Wang L, Yi Z, Zhao Y, Liu Y, Wang S. Stretchable conductors for stretchable field-effect transistors and functional circuits. Chem Soc Rev 2023; 52:795-835. [PMID: 36562312 DOI: 10.1039/d2cs00837h] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Stretchable electronics have received intense attention due to their broad application prospects in many areas, and can withstand large deformations and form close contact with curved surfaces. Stretchable conductors are vital components of stretchable electronic devices used in wearables, soft robots, and human-machine interactions. Recent advances in stretchable conductors have motivated basic scientific and technological research efforts. Here, we outline and analyse the development of stretchable conductors in transistors and circuits, and examine advances in materials, device engineering, and preparation technologies. We divide the existing approaches to constructing stretchable transistors with stretchable conductors into the following two types: geometric engineering and intrinsic stretchability engineering. Finally, we consider the challenges and outlook in this field for delivering stretchable electronics.
Collapse
Affiliation(s)
- Liangjie Wang
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China.
| | - Zhengran Yi
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China.
| | - Yan Zhao
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China.
| | - Yunqi Liu
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China.
| | - Shuai Wang
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China. .,School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| |
Collapse
|