1
|
Tang Y, Shi Y, Su Y, Cao S, Hu J, Zhou H, Sun Y, Liu Z, Zhang S, Xue H, Pang H. Enhanced Capacitive Deionization of Hollow Mesoporous Carbon Spheres/MOFs Derived Nanocomposites by Interface-Coating and Space-Encapsulating Design. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403802. [PMID: 39140249 PMCID: PMC11497006 DOI: 10.1002/advs.202403802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/29/2024] [Indexed: 08/15/2024]
Abstract
Exploring new carbon-based electrode materials is quite necessary for enhancing capacitive deionization (CDI). Here, hollow mesoporous carbon spheres (HMCSs)/metal-organic frameworks (MOFs) derived carbon materials (NC(M)/HMCSs and NC(M)@HMCSs) are successfully prepared by interface-coating and space-encapsulating design, respectively. The obtained NC(M)/HMCSs and NC(M)@HMCSs possess a hierarchical hollow nanoarchitecture with abundant nitrogen doping, high specific surface area, and abundant meso-/microporous pores. These merits are conducive to rapid ion diffusion and charge transfer during the adsorption process. Compared to NC(M)/HMCSs, NC(M)@HMCSs exhibit superior electrochemical performance due to their better utilization of the internal space of hollow carbon, forming an interconnected 3D framework. In addition, the introduction of Ni ions is more conducive to the synergistic effect between ZIF(M)-derived carbon and N-doped carbon shell compared with other ions (Mn, Co, Cu ions). The resultant Ni-1-800-based CDI device exhibits excellent salt adsorption capacity (SAC, 37.82 mg g-1) and good recyclability. This will provide a new direction for the MOF nanoparticle-driven assembly strategy and the application of hierarchical hollow carbon nanoarchitecture to CDI.
Collapse
Affiliation(s)
- Yijian Tang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Yuxin Shi
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Yichun Su
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Shuai Cao
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Jinliang Hu
- Jiangsu Yangnong Chemical Group Co. Ltd.Yangzhou225009P. R. China
| | - Huijie Zhou
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Yangyang Sun
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Zheng Liu
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Songtao Zhang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Huaiguo Xue
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| |
Collapse
|
2
|
Man Z, Wu W. Study on the Synthesis, Surface Activity, and Self-Assembly Behavior of Anionic Non-Ionic Gemini Surfactants. Molecules 2024; 29:1725. [PMID: 38675545 PMCID: PMC11052042 DOI: 10.3390/molecules29081725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
The use of surfactants in oil recovery can effectively improve crude oil recovery rate. Due to the enhanced salt and temperature resistance of surfactant molecules by non-ionic chain segments, anionic groups have good emulsifying stability. Currently, there are many studies on anionic non-ionic surfactants for oil recovery in China, but there is relatively little systematic research on introducing EOs into hydrophobic alkyl chains, especially on their self-assembly behavior. This article proposes a simple and effective synthesis method, using 3-aminopropane sulfonic acid, fatty alcohol polyoxyethylene ether, and epichlorohydrin as raw materials, to insert EO into hydrophobic alkyl chains and synthesize a series of new anionic non-ionic Gemini surfactants (CnEO-5, n = 8, 12, 16). The surface activity, thermodynamic properties, and self-assembly behavior of these surfactants were systematically studied through surface tension, conductivity, steady-state fluorescence probes, transmission electron microscopy, and molecular dynamics simulations. The surface tension test results show that CnEO-5 has high surface activity and is higher than traditional single chain surfactants and structurally similar anionic non-ionic Gemini surfactants. Additionally, thermodynamic parameters (e.g., ΔG°mic ΔH°mic ΔS°mic et al. indicate that CnEO-5 molecules are exothermic and spontaneous during the micellization process. DLS, p-values, and TEM results indicate that anionic non-ionic Gemini surfactants with shorter hydrophobic chains (such as C8EO-5) tend to form larger vesicles in aqueous solutions, which are formed in a tail to tail and staggered manner; Negative non-ionic Gemini surfactants with longer hydrophobic chains (such as C12EO-5, C16EO-5) tend to form small micelles. The test results indicate that CnEO-5 anionic non-ionic Gemini surfactants have certain application prospects in improving crude oil recovery.
Collapse
Affiliation(s)
- Zhiqiang Man
- Key Laboratory of Enhanced Oil Recovery, Northeast Petroleum University, Ministry of Education, Daqing 163318, China
- No. 1 Oil Production Plant, PetroChina Daqing Oilfield Company, Daqing 163001, China
| | - Wenxiang Wu
- Key Laboratory of Enhanced Oil Recovery, Northeast Petroleum University, Ministry of Education, Daqing 163318, China
| |
Collapse
|
3
|
Liu ZH, Ma FX, Fan HS, Liu ZQ, Du Y, Zhen L, Xu CY. Formulating N-Doped Carbon Hollow Nanospheres with Highly Accessible Through-Pores to Isolate Fe Single-Atoms for Efficient Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305700. [PMID: 37797186 DOI: 10.1002/smll.202305700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/19/2023] [Indexed: 10/07/2023]
Abstract
It is challenging yet promising to design highly accessible N-doped carbon skeletons to fully expose the active sites inside single-atom catalysts. Herein, mesoporous N-doped carbon hollow spheres with regulatable through-pore size can be formulated by a simple sequential synthesis procedure, in which the condensed SiO2 is acted as removable dual-templates to produce both hollow interiors and through-pores, meanwhile, the co-condensed polydopamine shell is served as N-doped carbon precursor. After that, Fe─N─C hollow spheres (HSs) with highly accessible active sites can be obtained after rationally implanting Fe single-atoms. Microstructural analysis and X-ray absorption fine structure analysis reveal that high-density Fe─N4 active sites together with tiny Fe clusters are uniformly distributed on the mesoporous carbon skeleton with abundant through-pores. Benefitted from the highly accessible Fe─N4 active sites arising from the unique through-pore architecture, the Fe─N─C HSs demonstrate excellent oxygen reduction reaction (ORR) performance in alkaline media with a half-wave potential up to 0.90 V versus RHE and remarkable stability, both exceeding the commercial Pt/C. When employing Fe─N─C HSs as the air-cathode catalysts, the assembled Zn-air batteries deliver a high peak power density of 204 mW cm-2 and stable discharging voltage plateau over 140 h.
Collapse
Affiliation(s)
- Zi-Hao Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Fei-Xiang Ma
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Hong-Shuang Fan
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Zheng-Qi Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yue Du
- Peng Cheng Laboratory, Shenzhen, 518055, China
| | - Liang Zhen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
| | - Cheng-Yan Xu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
| |
Collapse
|
4
|
Li D, Feng Y, Li F, Tang J, Hua T. Carbon Fibers for Bioelectrochemical: Precursors, Bioelectrochemical System, and Biosensors. ADVANCED FIBER MATERIALS 2023; 5:699-730. [PMID: 36818429 PMCID: PMC9923679 DOI: 10.1007/s42765-023-00256-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/02/2023] [Indexed: 05/27/2023]
Abstract
Abstract Carbon fibers (CFs) demonstrate a range of excellent properties including (but not limited to) microscale diameter, high hardness, high strength, light weight, high chemical resistance, and high temperature resistance. Therefore, it is necessary to summarize the application market of CFs. CFs with good physical and chemical properties stand out among many materials. It is believed that highly fibrotic CFs will play a crucial role. This review first introduces the precursors of CFs, such as polyacrylonitrile, bitumen, and lignin. Then this review introduces CFs used in BESs, such as electrode materials and modification strategies of MFC, MEC, MDC, and other cells in a large space. Then, CFs in biosensors including enzyme sensor, DNA sensor, immune sensor and implantable sensor are summarized. Finally, we discuss briefly the challenges and research directions of CFs application in BESs, biosensors and more fields. Highlights CF is a new-generation reinforced fiber with high hardness and strength.Summary precursors from different sources of CFs and their preparation processes.Introduction of the application and modification methods of CFs in BESs and biosensor.Suggest the challenges in the application of CFs in the field of bio-electrochemistry.Propose the prospective research directions for CFs. Graphical abstract
Collapse
Affiliation(s)
- Donghao Li
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin, 300350 China
- Key Laboratory of Pollution Process and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350 China
| | - Yimeng Feng
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin, 300350 China
- Key Laboratory of Pollution Process and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350 China
| | - Fengxiang Li
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin, 300350 China
- Key Laboratory of Pollution Process and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350 China
| | - Jingchun Tang
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin, 300350 China
- Key Laboratory of Pollution Process and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350 China
| | - Tao Hua
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin, 300350 China
- Key Laboratory of Pollution Process and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350 China
| |
Collapse
|
5
|
Lu J, Ren L, Li C, Liu H. Three-dimensional hierarchical flower-like bimetallic–organic materials in situ grown on carbon cloth and doped with sulfur as an air cathode in a microbial fuel cell. NEW J CHEM 2023. [DOI: 10.1039/d2nj05476k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Herein, the output power density produced by Zn/Co-S-3DHFLM as the cathode catalyst of an MFC was higher than that of Co-3DHFLM.
Collapse
Affiliation(s)
- Jinrong Lu
- Chemical Science and Engineering College, North Minzu University, Yinchuan, 750021, P. R. China
| | - Linde Ren
- Chemical Science and Engineering College, North Minzu University, Yinchuan, 750021, P. R. China
| | - Cheng Li
- Chemical Science and Engineering College, North Minzu University, Yinchuan, 750021, P. R. China
| | - Hua Liu
- Chemical Science and Engineering College, North Minzu University, Yinchuan, 750021, P. R. China
| |
Collapse
|
6
|
Feng X, Sun T, Feng X, Chen L, Yang Y, Zhang F. Engineering the Near-Surface Structure of WO 3 by an Amorphous Layer with Trivalent Ni and Self-Adapting Oxygen Vacancies for Efficient Photocatalytic and Photoelectrochemical Acidic Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54769-54780. [PMID: 36469043 DOI: 10.1021/acsami.2c16839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Exploiting an effective strategy to tailor the construction, composition, and local electronic structure of the photocatalyst surface is pivotal to photocatalytic activity, but remains challenging. Transition metal elements can boost the oxygen evolution reaction activity especially one like Ni in high oxidation states, whereas it is uneasy to prepare Ni3+ under mild conditions or play to their strengths in acidic conditions. In this article, we report a facile "etch and dope" synthesis of Ni3+-doped WO3 nanosheets with oxygen vacancies. Through detailed experimental and theoretical studies, it is established that the abundant oxygen vacancies and the doped Ni3+ ions in the near-surface amorphous layer can synergistically optimize the surface electronic structure of WO3 and the adsorption and desorption of intermediates. Impressively, the etched WO3 nanosheets coupled with Ni3+ offer a greatly promoted photocatalytic performance of 1.78 mmol g-1 h-1, and the photoanode achieves a photocurrent density of 2.11 mA cm-2 at 1.23 V versus reversible hydrogen electrode (VRHE). This work provides a new inspiration for rational manufacture of defects and high-valence metal ions in catalysts for photocatalytic and photoelectrochemical reactions.
Collapse
Affiliation(s)
- Xinyan Feng
- Powder Metallurgy Research Institute, Central South University, Changsha410083, P. R. China
| | - Tingting Sun
- Powder Metallurgy Research Institute, Central South University, Changsha410083, P. R. China
| | - Xuefan Feng
- Powder Metallurgy Research Institute, Central South University, Changsha410083, P. R. China
| | - Limiao Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha410083, P. R. China
| | - Yu Yang
- Powder Metallurgy Research Institute, Central South University, Changsha410083, P. R. China
| | - Fuqin Zhang
- Powder Metallurgy Research Institute, Central South University, Changsha410083, P. R. China
| |
Collapse
|