1
|
Wang W, Yang K, Zhu Q, Zhang T, Guo L, Hu F, Zhong R, Wen X, Wang H, Qi J. MOFs-Based Materials with Confined Space: Opportunities and Challenges for Energy and Catalytic Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311449. [PMID: 38738782 DOI: 10.1002/smll.202311449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/15/2024] [Indexed: 05/14/2024]
Abstract
Metal-Organic Frameworks (MOFs) are a very promising material in the fields of energy and catalysis due to their rich active sites, tunable pore size, structural adaptability, and high specific surface area. The concepts of "carbon peak" and "carbon neutrality" have opened up huge development opportunities in the fields of energy storage, energy conversion, and catalysis, and have made significant progress and breakthroughs. In recent years, people have shown great interest in the development of MOFs materials and their applications in the above research fields. This review introduces the design strategies and latest progress of MOFs are included based on their structures such as core-shell, yolk-shell, multi-shelled, sandwich structures, unique crystal surface exposures, and MOF-derived nanomaterials in detail. This work comprehensively and systematically reviews the applications of MOF-based materials in energy and catalysis and reviews the research progress of MOF materials for atmospheric water harvesting, seawater uranium extraction, and triboelectric nanogenerators. Finally, this review looks forward to the challenges and opportunities of controlling the synthesis of MOFs through low-cost, improved conductivity, high-temperature heat resistance, and integration with machine learning. This review provides useful references for promoting the application of MOFs-based materials in the aforementioned fields.
Collapse
Affiliation(s)
- Wei Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning, 110819, China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Ke Yang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Qinghan Zhu
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Tingting Zhang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Li Guo
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Feiyang Hu
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Ruixia Zhong
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Xiaojing Wen
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Haiwang Wang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Jian Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Liu Y, Li P, Wang Z, Gao L. Shape-Preserved CoFeNi-MOF/NF Exhibiting Superior Performance for Overall Water Splitting across Alkaline and Neutral Conditions. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2195. [PMID: 38793262 PMCID: PMC11123414 DOI: 10.3390/ma17102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024]
Abstract
This study reported a multi-functional Co0.45Fe0.45Ni0.9-MOF/NF catalyst for oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and overall water splitting, which was synthesized via a novel shape-preserving two-step hydrothermal method. The resulting bowknot flake structure on NF enhanced the exposure of active sites, fostering a superior electrocatalytic surface, and the synergistic effect between Co, Fe, and Ni enhanced the catalytic activity of the active site. In an alkaline environment, the catalyst exhibited impressive overpotentials of 244 mV and 287 mV at current densities of 50 mA cm-2 and 100 mA cm-2, respectively. Transitioning to a neutral environment, an overpotential of 505 mV at a current density of 10 mA cm-2 was achieved with the same catalyst, showing a superior property compared to similar catalysts. Furthermore, it was demonstrated that Co0.45Fe0.45Ni0.9-MOF/NF shows versatility as a bifunctional catalyst, excelling in both OER and HER, as well as overall water splitting. The innovative shape-preserving synthesis method presented in this study offers a facile method to develop an efficient electrocatalyst for OER under both alkaline and neutral conditions, which makes it a promising catalyst for hydrogen production by water splitting.
Collapse
Affiliation(s)
| | | | | | - Liangjuan Gao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China; (Y.L.); (P.L.); (Z.W.)
| |
Collapse
|
3
|
Zhu Z, Duan J, Chen S. Metal-Organic Framework (MOF)-Based Clean Energy Conversion: Recent Advances in Unlocking its Underlying Mechanisms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309119. [PMID: 38126651 DOI: 10.1002/smll.202309119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Carbon neutrality is an important goal for humanity . As an eco-friendly technology, electrocatalytic clean energy conversion technology has emerged in the 21st century. Currently, metal-organic framework (MOF)-based electrocatalysis, including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), carbon dioxide reduction reaction (CO2RR), nitrogen reduction reaction (NRR), are the mainstream energy catalytic reactions, which are driven by electrocatalysis. In this paper, the current advanced characterizations for the analyses of MOF-based electrocatalytic energy reactions have been described in details, such as density function theory (DFT), machine learning, operando/in situ characterization, which provide in-depth analyses of the reaction mechanisms related to the above reactions reported in the past years. The practical applications that have been developed for some of the responses that are of application values, such as fuel cells, metal-air batteries, and water splitting have also been demonstrated. This paper aims to maximize the potential of MOF-based electrocatalysts in the field of energy catalysis, and to shed light on the development of current intense energy situations.
Collapse
Affiliation(s)
- Zheng Zhu
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China
| | - Jingjing Duan
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China
| | - Sheng Chen
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China
| |
Collapse
|
4
|
Zhong W, Yue J, Zhang R, Huang H, Huang H, Shen Z, Jiang L, Xu M, Xia Q, Cao Y. Screening of Transition Metal Supported on Black Phosphorus as Electrocatalysts for CO 2 Reduction. Inorg Chem 2024; 63:1035-1045. [PMID: 38171367 DOI: 10.1021/acs.inorgchem.3c03320] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The electrocatalytic CO2 reduction (CO2RR) is an effective and economical strategy to eliminate CO2 through conversion into value-added chemicals and fuels. However, exploring and screening suitable 2D material-based single-atom catalysts (SACs) for CO2 reduction are still a great challenge. In this study, 27 (3d, 4d, and 5d, except Tc and Hg) transition metal (TM) atom-doped black phosphorus (TM@BP) electrocatalysts were systematically investigated for CO2RR by density functional theory calculations. According to the stability of SACs and their effectiveness in activating the CO2 molecule, three promising catalysts, Zr@BP, Nb@BP, and Ru@BP, were successfully screened out, exhibiting outstanding catalytic activity for the production of carbon monoxide (CO), methyl alcohol (CH3OH), and methane (CH4) with limiting potentials of -0.79, -0.49, and -0.60 V, respectively. A catalytic relationship between the d-band centers of SACs and the limiting potential of CO2RR was used to estimate the catalytic activity of catalysts. Furthermore, Nb@BP has high selectivity for CO2RR to CH3OH compared to H2 formation, while the hydrogen evolution reaction significantly impacts the synthesis of CO and CH4 on Zr@BP and Ru@BP. Nitrogen atom doping in BP is beneficial for enhancing the selectivity of CO2RR, but it is detrimental to the activity of CO2RR. This study offers theoretical guidance for synthesizing highly efficient CO2RR electrocatalysts and further enhances structural modulation methods for layered 2D materials.
Collapse
Affiliation(s)
- Weichan Zhong
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Jingxiu Yue
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Rongxin Zhang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Hongjie Huang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Hong Huang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Zhangfeng Shen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Lingchang Jiang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Minhong Xu
- Department of Materials Engineering, Huzhou University, Huzhou, Zhejiang 313000, P. R. China
| | - Qineng Xia
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Yongyong Cao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| |
Collapse
|
5
|
Yu J, Tian H, Lai G, Wang J, Zhao J, Tang G, Gao J, Yu XF, Qu G, Zhang H, Jiang G. Accelerating the environmental applications of black phosphorus: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167829. [PMID: 37852486 DOI: 10.1016/j.scitotenv.2023.167829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Since its rediscovery in 2014, layered black phosphorus (BP) has received extensive attention as a new two-dimensional semiconductor. BP is a promising material with properties of a large surface-to-volume ratio, wide light absorption range, tunable band gap, and high charge carrier mobility. These unique characteristics of BP make it a promising contender for various applications, particularly in the realm of environmental applications. This literature review provides a comprehensive discussion and overview of the latest developments in utilizing BP for environmental purposes. The review starts with the applications of BP in photocatalysis including photodegradation of refractory pollutants, H2 evolution reaction (HER), and reduction of CO2 and N2. In the following section, Environmental electrocatalysis of HER and N2 reduction reaction (NRR) is discussed. In addition, BP-based environmental sensing (detection of heavy metal ions, antibiotics, mycotoxins, NOx) and eco-friendly halogen-free flame retardant are summarized as well. Finally, a thorough comprehension of the current state and potential future trends of BP-based nanomaterials for various environmental applications are presented.
Collapse
Affiliation(s)
- Jiachen Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Haijiang Tian
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gengchang Lai
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahong Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jing Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xue-Feng Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Haiyan Zhang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Han D, Du G, Wang Y, Jia L, Chen S, Zhao W, Su Q, Ding S, Zhang M, Xu B. Three-dimensional carbon network-supported black phosphorus-cobalt heterojunctions: An efficient electrocatalyst for high-rate oxygen evolution. J Colloid Interface Sci 2023; 651:415-423. [PMID: 37549526 DOI: 10.1016/j.jcis.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
Black phosphorus (BP), as a burgeoning two-dimensional material, has shown good electrocatalytic activity due to its unique electronic structure and abundant active sites.However, the presence of lone pair electrons in black phosphorus leads to its poor stability and rapid degradation in an oxygen/water environment, which greatly limits its practical application. Herein, BP-Co heterojunctions were synthesized on carbon nanotube@nitrogen-doped carbon (BP-Co/CNT@NC) by the pyrolysis of ZnCo-zeolitic imidazolate frameworks and subsequent solvothermal treatment. The BP-Co Schottky junction improved the electrocatalytic stability of BP, modulated its electronic structure, improved its conductivity and electron transfer during the electrocatalytic reaction. Density functional theory calculation was used to confirm the electron transfer and redistribution at the interface between BP and Co, which constructed an oppositely charged region and formed a strong built-in field. Energy band configuration analysis revealed a narrowed band gap because of the formation of BP-Co Schottky junction. Consequently, the optimized BP-Co/CNT@NC exhibited a superior oxygen evolution reaction (OER) performance, a low overpotential of 370 mV@100 mA/cm2, with a small Tafel slope of 40 mV/dec and good long-term stability. Particularly, the catalyst has an excellent OER performance at the high current density of 100-400 mA/cm2. This strategy improves the stability of BP electrocatalysts and strengthens their utilization in electrocatalytic applications.
Collapse
Affiliation(s)
- Di Han
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Gaohui Du
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China.
| | - Yunting Wang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lina Jia
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shixian Chen
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenqi Zhao
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qingmei Su
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Shukai Ding
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Miao Zhang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Bingshe Xu
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
7
|
Xu L, Chen J, Zhao P, Shen B, Zhou Z, Wang Z. Stable Loading of TiO 2 Catalysts on the Surface of Metal Substrate for Enhanced Photocatalytic Toluene Oxidation. Molecules 2023; 28:6187. [PMID: 37687016 PMCID: PMC10489080 DOI: 10.3390/molecules28176187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
To promote the practical application of TiO2 in photocatalytic toluene oxidation, the honeycomb aluminum plates were selected as the metal substrate for the loading of TiO2 powder. Surface-etching treatment was performed and titanium tetrachloride was selected as the binder to strengthen the loading stability. The loading stability and photocatalytic activity of the monolithic catalyst were further investigated, and the optimal surface treatment scheme (acid etching with 15.0 wt.% HNO3 solution for 15 min impregnation) was proposed. Therein, the optimal monolithic catalyst could achieve the loading efficiency of 42.4% and toluene degradation efficiencies of 76.2%. The mechanism for the stable loading of TiO2 was revealed by experiment and DFT calculation. The high surface roughness of metal substrate and the strong chemisorption between TiO2 and TiCl4 accounted for the high loading efficiency and photocatalytic activity. This work provides the pioneering exploration for the practical application of TiO2 catalysts loaded on the surface of metal substrate for VOCs removal, which is of significance for the large-scaled application of photocatalytic technology.
Collapse
Affiliation(s)
- Le Xu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jiateng Chen
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Pengcheng Zhao
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Boxiong Shen
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zijian Zhou
- A State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhuozhi Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
8
|
Zhou Y, Wu Y, Guo D, Li J, Li Y, Yang X, Fu S, Sui G, Chai DF. Novel Strain Engineering Combined with a Microscopic Pore Synergistic Modulated Strategy for Designing Lattice Tensile-Strained Porous V 2C-MXene for High-Performance Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15797-15809. [PMID: 36930051 DOI: 10.1021/acsami.2c19729] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Transition metal carbon/nitride (MXene) holds immense potential as an innovative electrocatalyst for enhancing the overall water splitting properties. Nevertheless, the re-stacking nature induced by van der Waals force remains a significant challenge. In this work, the lattice tensile-strained porous V2C-MXene (named as TS(24)-P(50)-V2C) is successfully constructed via the rapid spray freezing method and the following hydrothermal treatment. Besides, the influence of lattice strain degree and microscopic pores on the catalytic ability is reviewed and explored systematically. The lattice tensile strain within V2C-MXene could widen the interlayer spacing and accelerate the ion transfer. The microscopic pores could change the ion transmission path and shorten the migration distance. As a consequence, the obtained TS(24)-P(50)-V2C shows extraordinary hydrogen evolution reaction and oxygen evolution reaction activity with the overpotential of 154 and 269 mV, respectively, at the current density of 10 mA/cm2, which is quite remarkable compared to the MXene-based electrocatalysts. Moreover, the overall water splitting device assembled using TS(24)-P(50)-V2C as both anode and cathode demonstrates a low cell voltage requirement of 1.57 V to obtain 10 mA/cm2. Overall, the implementation of this work could offer an exciting avenue to overcome the re-stacking issue of V2C-MXene, affording a high-efficiency electrocatalyst with superior catalytic activity and desirable reaction kinetics.
Collapse
Affiliation(s)
- Yu Zhou
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yousen Wu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Dongxuan Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Jinlong Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Yue Li
- School of Polymer Science & Engineering, Qingdao University of Science & Technology, Qingdao 266101, China
| | - Xue Yang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Shanshan Fu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Guozhe Sui
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Dong-Feng Chai
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| |
Collapse
|
9
|
Yang J, Shen Y, Sun Y, Xian J, Long Y, Li G. Ir Nanoparticles Anchored on Metal-Organic Frameworks for Efficient Overall Water Splitting under pH-Universal Conditions. Angew Chem Int Ed Engl 2023; 62:e202302220. [PMID: 36859751 DOI: 10.1002/anie.202302220] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/03/2023]
Abstract
The construction of high-activity and low-cost electrocatalysts is critical for efficient hydrogen production by water electrolysis. Herein, we developed an advanced electrocatalyst by anchoring well-dispersed Ir nanoparticles on nickel metal-organic framework (MOF) Ni-NDC (NDC: 2,6-naphthalenedicarboxylic) nanosheets. Benefiting from the strong synergy between Ir and MOF through interfacial Ni-O-Ir bonds, the synthesized Ir@Ni-NDC showed exceptional electrocatalytic performance for hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and overall water splitting in a wide pH range, superior to commercial benchmarks and most reported electrocatalysts. Theoretical calculations revealed that the charge redistribution of Ni-O-Ir bridge induced the optimization of H2 O, OH* and H* adsorption, thus leading to the accelerated electrochemical kinetics for HER and OER. This work provides a new clue to exploit bifunctional electrocatalysts for pH-universal overall water splitting.
Collapse
Affiliation(s)
- Jun Yang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yong Shen
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yamei Sun
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jiahui Xian
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yanju Long
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Guangqin Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
10
|
Cao Y, Li L, Yu X, Tahir M, Xiang Z, Kong W, Lu Z, Xing X, Song Y. Engineering Vacancies at the 2D Nanocrystals for Robust Bifunctional Electrocatalysts. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56725-56734. [PMID: 36524589 DOI: 10.1021/acsami.2c15955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) through water decomposition are feasible methods to produce green and clean energy. Herein, we report a facile two-step strategy for the preparation of non-noble metal defect-rich nanosheets by an electrochemical process at room temperature. First-principle calculations are used to study the bifunctional catalytic reaction mechanism of defect engineering in transition-metal dichalcogenides (TMDs); from the first-principle calculations, we predicted that the rich S vacancies on the nanosheet promoted electron transfer and reduced the energy barrier of electrocatalysis. As a substantiation, we conducted HER/OER electrochemical characterizations and found that the defect-rich atomic-thick tantalum sulfide is a kind of dual-function electrocatalyst with enhanced comprehensive properties of Tafel slope (39 mV/dec for HER, 38 mV/dec for OER) and low overpotential (0.099 V for HER, 0.153 V for OER) in acidic and alkaline environments, respectively. Likewise, the defect-rich catalysts exhibit high stability in acidic and alkaline solutions, which have potential applications as electrocatalysts for the large-scale production of hydrogen and oxygen.
Collapse
Affiliation(s)
- Yawei Cao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing100083, P. R. China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing100190, P. R. China
| | - Lihong Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing100190, P. R. China
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan430074, P. R. China
| | - Xiaoxia Yu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing100083, P. R. China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing100190, P. R. China
| | - Muhammad Tahir
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing100190, P. R. China
| | - Zhongyuan Xiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Wei Kong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing100083, P. R. China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing100190, P. R. China
| | - Zehua Lu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing100083, P. R. China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing100190, P. R. China
| | - Xianran Xing
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing100083, P. R. China
| | - Yanlin Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| |
Collapse
|