1
|
Yang Y, Jeon Y, Dong Z, Yang JKW, Haddadi Moghaddam M, Kim DS, Oh DK, Lee J, Hentschel M, Giessen H, Kang D, Kim G, Tanaka T, Zhao Y, Bürger J, Maier SA, Ren H, Jung W, Choi M, Bae G, Chen H, Jeon S, Kim J, Lee E, Kang H, Park Y, Du Nguyen D, Kim I, Cencillo-Abad P, Chanda D, Jing X, Liu N, Martynenko IV, Liedl T, Kwak Y, Nam JM, Park SM, Odom TW, Lee HE, Kim RM, Nam KT, Kwon H, Jeong HH, Fischer P, Yoon J, Kim SH, Shim S, Lee D, Pérez LA, Qi X, Mihi A, Keum H, Shim M, Kim S, Jang H, Jung YS, Rossner C, König TAF, Fery A, Li Z, Aydin K, Mirkin CA, Seong J, Jeon N, Xu Z, Gu T, Hu J, Kwon H, Jung H, Alijani H, Aharonovich I, Kim J, Rho J. Nanofabrication for Nanophotonics. ACS NANO 2025; 19:12491-12605. [PMID: 40152322 DOI: 10.1021/acsnano.4c10964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Nanofabrication, a pivotal technology at the intersection of nanoscale engineering and high-resolution patterning, has substantially advanced over recent decades. This technology enables the creation of nanopatterns on substrates crucial for developing nanophotonic devices and other applications in diverse fields including electronics and biosciences. Here, this mega-review comprehensively explores various facets of nanofabrication focusing on its application in nanophotonics. It delves into high-resolution techniques like focused ion beam and electron beam lithography, methods for 3D complex structure fabrication, scalable manufacturing approaches, and material compatibility considerations. Special attention is given to emerging trends such as the utilization of two-photon lithography for 3D structures and advanced materials like phase change substances and 2D materials with excitonic properties. By highlighting these advancements, the review aims to provide insights into the ongoing evolution of nanofabrication, encouraging further research and application in creating functional nanostructures. This work encapsulates critical developments and future perspectives, offering a detailed narrative on the state-of-the-art in nanofabrication tailored for both new researchers and seasoned experts in the field.
Collapse
Affiliation(s)
- Younghwan Yang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Youngsun Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Zhaogang Dong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Joel K W Yang
- Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Mahsa Haddadi Moghaddam
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dai-Sik Kim
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dong Kyo Oh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jihae Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Mario Hentschel
- fourth Physics Institute and Research Center SCoPE, University of Stuttgart, Stuttgart 70569, Germany
| | - Harald Giessen
- fourth Physics Institute and Research Center SCoPE, University of Stuttgart, Stuttgart 70569, Germany
| | - Dohyun Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Gyeongtae Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Takuo Tanaka
- RIKEN Center for Advanced Photonics, Wako 351-0198, Japan
- Institute of Post-LED Photonics, Tokushima University, Tokushima 770-8501, Japan
| | - Yang Zhao
- Department of Electrical and Computer Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Johannes Bürger
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Ludwig-Maximilians-Universität, Munich 80539, Germany
| | - Stefan A Maier
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
- Department of Physics, Imperial College London, London SW72AZ, United Kingdom
| | - Haoran Ren
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
| | - Wooik Jung
- Department of Creative Convergence Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea
| | - Mansoo Choi
- Global Frontier Center for Multiscale Energy Systems, Seoul National University, Seoul 08826, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Gwangmin Bae
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Haomin Chen
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seokwoo Jeon
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jaekyung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Eunji Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyunjung Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yujin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dang Du Nguyen
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Inki Kim
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pablo Cencillo-Abad
- NanoScience Technology Center, University of Central Florida, Florida 32826, United States
| | - Debashis Chanda
- NanoScience Technology Center, University of Central Florida, Florida 32826, United States
- Department of Physics, University of Central Florida, Florida 32816, United States
- The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, United States
| | - Xinxin Jing
- Second Physics Institute, University of Stuttgart Pfaffenwaldring 57, Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart D-70569, Germany
| | - Na Liu
- Second Physics Institute, University of Stuttgart Pfaffenwaldring 57, Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart D-70569, Germany
| | - Irina V Martynenko
- Faculty of Physics and Center for NanoScience (CeNS) Ludwig-Maxim8ilians-University, Munich 80539, Germany
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience (CeNS) Ludwig-Maxim8ilians-University, Munich 80539, Germany
| | - Yuna Kwak
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Min Park
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hye-Eun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunah Kwon
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg 69120, Germany
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Peer Fischer
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg 69120, Germany
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Yonsei University, Seoul, 03722, Republic of Korea
| | - Jiwon Yoon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sangmin Shim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Dasol Lee
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Luis A Pérez
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Xiaoyu Qi
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Agustin Mihi
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Hohyun Keum
- Digital Health Care R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Moonsub Shim
- Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, Illinois 61801, United States
| | - Seok Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hanhwi Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Christian Rossner
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, Dresden 01069, Germany
- Department of Polymers, University of Chemistry and Technology Prague, Prague 6 166 28, Czech Republic
| | - Tobias A F König
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, Dresden 01069, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden 01069, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden 01069, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Dresden 01069, Germany
| | - Zhiwei Li
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Mayland 20742, United States
| | - Koray Aydin
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Junhwa Seong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Nara Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Zhiyun Xu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tian Gu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Juejun Hu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyounghan Kwon
- Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Quantum Information, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hojoong Jung
- Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hossein Alijani
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| |
Collapse
|
2
|
Park Y, Kim J, Yang Y, Oh DK, Kang H, Kim H, Rho J. Tape-Assisted Residual Layer-Free One-Step Nanoimprinting of High-Index Hybrid Polymer for Optical Loss-Suppressed Metasurfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409371. [PMID: 39778013 PMCID: PMC11905001 DOI: 10.1002/advs.202409371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/05/2024] [Indexed: 01/11/2025]
Abstract
The commercialization of metasurfaces is crucial for real-world applications such as wearable sensors, pigment-free color pixels, and augmented and virtual reality devices. Nanoparticle-embedded resin-based nanoimprint lithography (PER-NIL) has shown itself to be a low-cost, high-throughput manufacturing method enabling the replication of high-index nanostructures. It has been extensively integrated into the fabrication of hologram metasurfaces, metalenses, and sensors due to its procedural simplicity. Most research on PER-NIL has been limited to exploring appropriate materials to enhance the efficiency of imprinted metasurfaces, but the intrinsic issue of PER-NIL lies in the high-index residual layer remaining on the substrate. This high-index residual layer generates undesired noise, limiting the efficiency and functionality of imprinted metasurfaces. Despite the need for the removal of the residual layer, it has never been experimentally achieved owing to the different etching rates between the nanoparticles and resin. Here, a new methodology named tape-assisted PER-NIL is proposed, achieving one-step removal of the residual layer using a tape. This novel method enables the replication of residual layer-free, high-index metasurfaces. As a result, imprinted residual layer-free metasurfaces prove their potential in high-purity dielectric structural colorations by achieving a sharp reflectance peak unattainable with conventional NIL, and in vivid hologram metasurfaces by covering a full 2π phase without unwanted scattering.
Collapse
Affiliation(s)
- Yujin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Younghwan Yang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Dong Kyo Oh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyunjung Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hongyoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea
- National Institute of Nanomaterials Technology (NINT), Pohang, 37673, Republic of Korea
| |
Collapse
|
3
|
Zhang K, Lin Y, Qiu Y, Zhao X, Zheng S, Dong Y, Zhong Q, Hu T. Nanoimprinted TiO 2 Metasurfaces with Reduced Meta-Atom Aspect Ratio and Enhanced Performance for Holographic Imaging. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2273. [PMID: 38793343 PMCID: PMC11123217 DOI: 10.3390/ma17102273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Metasurface holograms, with the capability to manipulate spatial light amplitudes and phases, are considered next-generation solutions for holographic imaging. However, conventional fabrication approaches for meta-atoms are heavily dependent on electron-beam lithography (EBL), a technique known for its expensive and time-consuming nature. In this paper, a polarization-insensitive metasurface hologram is proposed using a cost-effective and rapid nanoimprinting method with titanium dioxide (TiO2) nanoparticle loaded polymer (NLP). Based on a simulation, it has been found that, despite a reduction in the aspect ratio of meta-atoms of nearly 20%, which is beneficial to silicon master etching, NLP filling, and the mold release processes, imaging efficiency can go up to 54% at wavelength of 532 nm. In addition, it demonstrates acceptable imaging quality at wavelengths of 473 and 671 nm. Moreover, the influence of fabrication errors and nanoimprinting material degradation in terms of residual layer thickness, meta-atom loss or fracture, thermal-induced dimensional variation, non-uniform distribution of TiO2 particles, etc., on the performance is investigated. The simulation results indicate that the proposed device exhibits a high tolerance to these defects, proving its applicability and robustness in practice.
Collapse
Affiliation(s)
- Kaiyu Zhang
- School of Microelectronics, Shanghai University, Shanghai 201899, China
- Shanghai Key Laboratory of Intelligent Connected Vehicle Interaction Chip and System, Shanghai University, Shanghai 200444, China
| | - Yuqi Lin
- School of Microelectronics, Shanghai University, Shanghai 201899, China
- Shanghai Key Laboratory of Intelligent Connected Vehicle Interaction Chip and System, Shanghai University, Shanghai 200444, China
| | - Yang Qiu
- School of Microelectronics, Shanghai University, Shanghai 201899, China
- Shanghai Key Laboratory of Intelligent Connected Vehicle Interaction Chip and System, Shanghai University, Shanghai 200444, China
| | - Xingyan Zhao
- School of Microelectronics, Shanghai University, Shanghai 201899, China
- Shanghai Key Laboratory of Intelligent Connected Vehicle Interaction Chip and System, Shanghai University, Shanghai 200444, China
| | - Shaonan Zheng
- School of Microelectronics, Shanghai University, Shanghai 201899, China
- Shanghai Key Laboratory of Intelligent Connected Vehicle Interaction Chip and System, Shanghai University, Shanghai 200444, China
| | - Yuan Dong
- School of Microelectronics, Shanghai University, Shanghai 201899, China
- Shanghai Key Laboratory of Intelligent Connected Vehicle Interaction Chip and System, Shanghai University, Shanghai 200444, China
| | - Qize Zhong
- School of Microelectronics, Shanghai University, Shanghai 201899, China
- Shanghai Key Laboratory of Intelligent Connected Vehicle Interaction Chip and System, Shanghai University, Shanghai 200444, China
| | - Ting Hu
- School of Microelectronics, Shanghai University, Shanghai 201899, China
- Shanghai Key Laboratory of Intelligent Connected Vehicle Interaction Chip and System, Shanghai University, Shanghai 200444, China
| |
Collapse
|
4
|
Li Y, Ansari MA, Ahmed H, Wang R, Wang G, Chen X. Longitudinally variable 3D optical polarization structures. SCIENCE ADVANCES 2023; 9:eadj6675. [PMID: 37992179 PMCID: PMC10664995 DOI: 10.1126/sciadv.adj6675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Generation and manipulation of three-dimensional (3D) optical polarization structures have received considerable interest because of their distinctive optical features and potential applications. However, the realization of multiple 3D polarization structures in a queue along the light propagation direction has not yet been reported. We propose and experimentally demonstrate a metalens to create longitudinally variable 3D polarization knots. A single metalens can simultaneously generate three distinct 3D polarization knots, which are indirectly validated with a rotating polarizer. The 3D polarization profiles are dynamically modulated by manipulating the linear polarization direction of the incident light. We further showcase the 3D image steganography with the generated 3D polarization structures. The ultrathin nature of metasurfaces and unique properties of the developed metalenses hold promise for lightweight polarization systems applicable to areas such as 3D image steganography and virtual reality.
Collapse
Affiliation(s)
- Yan Li
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
- School of Materials, Zhengzhou University of Aeronautics, Zhengzhou 450015, China
| | - Muhammad Afnan Ansari
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Hammad Ahmed
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Ruoxing Wang
- Department of Mathematics and Physics, North China Electric Power University, Baoding 071003, China
| | - Guanchao Wang
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Xianzhong Chen
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| |
Collapse
|
5
|
Ke Y, Bian Y, Tang Q, Tian J, Zeng L, Chen Y, Zhou X. Rotational photonic spin Hall effect. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:4361-4373. [PMID: 39634714 PMCID: PMC11501681 DOI: 10.1515/nanoph-2023-0559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2024]
Abstract
Multidimensional manipulation of photonic spin Hall effect (PSHE) has attracted considerable interest due to its potential in a wide variety of spin-based applications. Plenty of research efforts have been devoted to transverse or longitudinal spin-dependent splitting; however, the splitting pattern that can self-rotate in a three-dimensional (3-D) space appears to be missing in literature. In this paper, we introduce a novel 3-D rotational PSHE, which can be realized and tuned using well-designed Pancharatnam-Berry phase metasurfaces. To demonstrate this phenomenon, we first show that when a single dielectric metasurface is used, the lobe-structured spin-splitting patterns on the transverse planes rotate and evolve along the propagation path. Then, we present that under two cascaded metasurfaces, the rotation angle of the splitting patterns are tunable by adjusting the relative rotation angle between the two metasurfaces. Finally, we manifest that the lobe number of the two spin-dependent splitting patterns can be independently controlled once we introduce a dynamic phase, which produces an asymmetrical rotational PSHE. The demonstrated phenomena can be used to achieve active manipulation of spin photons in multiple dimensions, and the developed device might find potential applications in various areas, e.g., optical microscopy.
Collapse
Affiliation(s)
- Yougang Ke
- School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang414006, China
| | - Yongfeng Bian
- School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang414006, China
| | - Qiang Tang
- School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang414006, China
| | - Jibo Tian
- School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang414006, China
| | - Linzhou Zeng
- School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang414006, China
| | - Yu Chen
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen518060, China
| | - Xinxing Zhou
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications, School of Physics and Electronics, Hunan Normal University, Changsha410081, China
| |
Collapse
|
6
|
Asad A, Kim J, Khaliq HS, Mahmood N, Akbar J, Chani MTS, Kim Y, Jeon D, Zubair M, Mehmood MQ, Massoud Y, Rho J. Spin-isolated ultraviolet-visible dynamic meta-holographic displays with liquid crystal modulators. NANOSCALE HORIZONS 2023; 8:759-766. [PMID: 37128758 DOI: 10.1039/d2nh00555g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Wearable displays or head-mounted displays (HMDs) have the ability to create a virtual image in the field of view of one or both eyes. Such displays constitute the main platform for numerous virtual reality (VR)- and augmented reality (AR)-based applications. Meta-holographic displays integrated with AR technology have potential applications in the advertising, media, and healthcare sectors. In the previous decade, dielectric metasurfaces emerged as a suitable choice for designing compact devices for highly efficient displays. However, the small conversion efficiency, narrow bandwidth, and costly fabrication procedures limit the device's functionalities. Here, we proposed a spin-isolated dielectric multi-functional metasurface operating at broadband optical wavelengths with high transmission efficiency in the ultraviolet (UV) and visible (Vis) regimes. The proposed metasurface comprised silicon nitride (Si3N4)-based meta-atoms with high bandgap, i.e., ∼ 5.9 eV, and encoded two holographic phase profiles. Previously, the multiple pieces of holographic information incorporated in the metasurfaces using interleaved and layer stacking techniques resulted in noisy and low-efficiency outputs. A single planar metasurface integrated with a liquid crystal was demonstrated numerically and experimentally in the current work to validate the spin-isolated dynamic UV-Vis holographic information at broadband wavelengths. In our opinion, the proposed metasurface can have promising applications in healthcare, optical security encryption, anti-counterfeiting, and UV-Vis nanophotonics.
Collapse
Affiliation(s)
- Aqsa Asad
- MicroNano Lab, Department of Electrical Engineering, Information Technology University (ITU) of the Punjab, Lahore 54600, Pakistan.
| | - Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Hafiz Saad Khaliq
- MicroNano Lab, Department of Electrical Engineering, Information Technology University (ITU) of the Punjab, Lahore 54600, Pakistan.
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Nasir Mahmood
- Innovative Technologies Laboratories (ITL), King Abdullah University of Science and Technology (KAUST), Saudi Arabia
| | - Jehan Akbar
- Glasgow College, University of Electronic Science and Technology of China, Chengdu 610056, China
| | | | - Yeseul Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Dongmin Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Muhammad Zubair
- Innovative Technologies Laboratories (ITL), King Abdullah University of Science and Technology (KAUST), Saudi Arabia
| | - Muhammad Qasim Mehmood
- MicroNano Lab, Department of Electrical Engineering, Information Technology University (ITU) of the Punjab, Lahore 54600, Pakistan.
| | - Yehia Massoud
- Innovative Technologies Laboratories (ITL), King Abdullah University of Science and Technology (KAUST), Saudi Arabia
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
- National Institute of Nanomaterials Technology (NINT), Pohang 37673, Republic of Korea
| |
Collapse
|
7
|
Satti AJ, Naveed MA, Javed I, Mahmood N, Zubair M, Mehmood MQ, Massoud Y. A highly efficient broadband multi-functional metaplate. NANOSCALE ADVANCES 2023; 5:2010-2016. [PMID: 36998653 PMCID: PMC10044298 DOI: 10.1039/d2na00953f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
Due to the considerable potential of ultra-compact and highly integrated meta-optics, multi-functional metasurfaces have attracted great attention. The mergence of nanoimprinting and holography is one of the fascinating study areas for image display and information masking in meta-devices. However, existing methods rely on layering and enclosing, where many resonators combine various functions effectively at the expense of efficiency, design complication, and complex fabrication. To overcome these limitations, a novel technique for a tri-operational metasurface has been suggested by merging PB phase-based helicity-multiplexing and Malus's law of intensity modulation. To the best of our knowledge, this technique resolves the extreme-mapping issue in a single-sized scheme without increasing the complexity of the nanostructures. For proof of concept, a multi-functional metasurface built of single-sized zinc sulfide (ZnS) nanobricks is developed to demonstrate the viability of simultaneous control of near and far-field operations. The proposed metasurface successfully verifies the implementation of a multi-functional design strategy with conventional single-resonator geometry by reproducing two high-fidelity images in the far field and projecting one nanoimprinting image in the near field. This makes the proposed information multiplexing technique a potential candidate for many high-end and multi-fold optical storage, information-switching, and anti-counterfeiting applications.
Collapse
Affiliation(s)
- Azhar Javed Satti
- Innovative Technologies Laboratories (ITL), King Abdullah University of Science and Technology (KAUST) Saudi Arabia
| | - Muhammad Ashar Naveed
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln Lincoln NE 68588 USA
| | - Isma Javed
- Innovative Technologies Laboratories (ITL), King Abdullah University of Science and Technology (KAUST) Saudi Arabia
| | - Nasir Mahmood
- Innovative Technologies Laboratories (ITL), King Abdullah University of Science and Technology (KAUST) Saudi Arabia
| | - Muhammad Zubair
- Innovative Technologies Laboratories (ITL), King Abdullah University of Science and Technology (KAUST) Saudi Arabia
| | - Muhammad Qasim Mehmood
- Innovative Technologies Laboratories (ITL), King Abdullah University of Science and Technology (KAUST) Saudi Arabia
| | - Yehia Massoud
- Innovative Technologies Laboratories (ITL), King Abdullah University of Science and Technology (KAUST) Saudi Arabia
| |
Collapse
|
8
|
Mahmood N, Kim J, Naveed MA, Kim Y, Seong J, Kim S, Badloe T, Zubair M, Mehmood MQ, Massoud Y, Rho J. Ultraviolet-Visible Multifunctional Vortex Metaplates by Breaking Conventional Rotational Symmetry. NANO LETTERS 2023; 23:1195-1201. [PMID: 36622968 DOI: 10.1021/acs.nanolett.2c04193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metasurfaces have shown remarkable potential to manipulate many of light's intrinsic properties, such as phase, amplitude, and polarization. Recent advancements in nanofabrication technologies and persistent efforts from the research community result in the realization of highly efficient, broadband, and multifunctional metasurfaces. Simultaneous control of these characteristics in a single-layered metasurface will be an apparent technological extension. Here, we demonstrate a broadband multifunctional metasurface platform with the unprecedented ability to independently control the phase profile for two orthogonal polarization states of incident light over dual-wavelength spectra (ultraviolet to visible). In this work, multiple single-layered metasurfaces composed of bandgap-engineered silicon nitride nanoantennas are designed, fabricated, and optically characterized to demonstrate broadband multifunctional light manipulation ability, including structured beam generation and meta-interferometer implementation. We envision the presented metasurface platform opening new avenues for broadband multifunctional applications including ultraviolet-visible spectroscopy, spatially modulated illumination microscopy, optical data storage, and information encoding.
Collapse
Affiliation(s)
- Nasir Mahmood
- Innovative Technologies Laboratories (ITL), King Abdullah University of Science and Technology (KAUST), Thuwal23995, Saudi Arabia
| | - Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang37673, Republic of Korea
| | - Muhammad Ashar Naveed
- Innovative Technologies Laboratories (ITL), King Abdullah University of Science and Technology (KAUST), Thuwal23995, Saudi Arabia
| | - Yeseul Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang37673, Republic of Korea
| | - Junhwa Seong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang37673, Republic of Korea
| | - Seokwoo Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang37673, Republic of Korea
| | - Trevon Badloe
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang37673, Republic of Korea
| | - Muhammad Zubair
- Innovative Technologies Laboratories (ITL), King Abdullah University of Science and Technology (KAUST), Thuwal23995, Saudi Arabia
| | - Muhammad Qasim Mehmood
- Innovative Technologies Laboratories (ITL), King Abdullah University of Science and Technology (KAUST), Thuwal23995, Saudi Arabia
| | - Yehia Massoud
- Innovative Technologies Laboratories (ITL), King Abdullah University of Science and Technology (KAUST), Thuwal23995, Saudi Arabia
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang37673, Republic of Korea
- National Institute of Nanomaterials Technology (NINT), Pohang37673, Republic of Korea
| |
Collapse
|
9
|
Mehmood MQ, Seong J, Naveed MA, Kim J, Zubair M, Riaz K, Massoud Y, Rho J. Single-Cell-Driven Tri-Channel Encryption Meta-Displays. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203962. [PMID: 36285678 PMCID: PMC9762282 DOI: 10.1002/advs.202203962] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/24/2022] [Indexed: 05/31/2023]
Abstract
Multi-functional metasurfaces have attracted great attention due to the significant possibilities to realize highly integrated and ultra-compact meta-devices. Merging nano-printing and holographic information multiplexing is one of the effective ways to achieve multi-functionality, and such a merger can increase the information encoding capacity. However, the current approaches rely on stacking layers and interleaving, where multiple resonators effectively combine different functionalities on the cost of efficiency, design complexity, and challenging fabrication. To address such challenges, a single meta-nanoresonator-based tri-functional metasurface is proposed by combining the geometric phase-based spin-decoupling and Malus's law intensity modulation. The proposed strategy effectively improves information capacity owing to the orientation degeneracy of spin-decoupling rather than layer stacking or super-cell designs. To validate the proposed strategy, a metasurface demonstrating two helicity-dependent holographic outputs is presented in far-field, whereas a continuous nano-printing image is in near-field. It is also employed on CMOS-compatible and cost-effective hydrogen amorphous silicon providing transparent responses for the whole visible band. As a result, the proposed metasurface has high transmission efficiency in the visible regime and verifies the design strategy without adding extra complexities to conventional nano-pillar geometry. Therefore, the proposed metasurface opens new avenues in multi-functional meta-devices design and has promising applications in anti-counterfeiting, optical storage and displays..
Collapse
Affiliation(s)
- Muhammad Qasim Mehmood
- MicroNano LabElectrical Engineering DepartmentInformation Technology University (ITU) of the PunjabFerozepur RoadLahore54600Pakistan
| | - Junhwa Seong
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Muhammad Ashar Naveed
- MicroNano LabElectrical Engineering DepartmentInformation Technology University (ITU) of the PunjabFerozepur RoadLahore54600Pakistan
| | - Joohoon Kim
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Muhammad Zubair
- MicroNano LabElectrical Engineering DepartmentInformation Technology University (ITU) of the PunjabFerozepur RoadLahore54600Pakistan
| | - Kashif Riaz
- MicroNano LabElectrical Engineering DepartmentInformation Technology University (ITU) of the PunjabFerozepur RoadLahore54600Pakistan
| | - Yehia Massoud
- Innovative Technologies Laboratories (ITL)King Abdullah University of Science and Technology (KAUST)Thuwal23955Saudi Arabia
| | - Junsuk Rho
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
- POSCO‐POSTECH‐RIST Convergence Research Center for Flat Optics and MetaphotonicsPohang37673Republic of Korea
- National Institute of Nanomaterials Technology (NINT)Pohang37673Republic of Korea
| |
Collapse
|
10
|
Luan S, Cao H, Deng H, Zheng G, Song Y, Gui C. Artificial Hyper Compound Eyes Enable Variable-Focus Imaging on both Curved and Flat Surfaces. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46112-46121. [PMID: 36174005 DOI: 10.1021/acsami.2c15489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The artificial compound eye (ACE) with zoom imaging requires complex power sources. Meanwhile, its curved substrate makes it difficult for the ACE to realize the zoom imaging on flat surfaces. To realize a wide field of view and a zoom function on both curved and flat surfaces simultaneously, a novel ACE is proposed, which is a bionic design inspired by an ancient creature, trilobite. Compared with a dragonfly, photosensitive units of a trilobite's compound eye are composed of ommatidia with different focal lengths. By learning from this concept, an artificial hyper compound eye (AHCE) was fabricated. Its basic components are five microlenses with different curvatures, and they are capable of being treated as five ommatidia with different focal lengths. Five ommatidia form a photosensitive unit to realize a zoom function. AHCE is capable of variable-focus imaging on curved surfaces. With the information share function, we found that the AHCE not only images on curved surfaces but also has a zoom-imaging function on flat surfaces. The results confirm that the AHCE demonstrates an advanced imaging capability, a variable-focus imaging function on both curved and flat surfaces, which may open new opportunities in developing advanced micro-optical devices.
Collapse
Affiliation(s)
- Shiyi Luan
- School of Power and Mechanical Engineering, Wuhan University, Wuhan430072, China
| | - Hao Cao
- The Institute of Technological Sciences, Wuhan University, Wuhan430072, China
| | - Hongfeng Deng
- The Institute of Technological Sciences, Wuhan University, Wuhan430072, China
| | - Guoxing Zheng
- Electronic Information School, Wuhan University, Wuhan430072, China
| | - Yi Song
- The Institute of Technological Sciences, Wuhan University, Wuhan430072, China
| | - Chengqun Gui
- The Institute of Technological Sciences, Wuhan University, Wuhan430072, China
| |
Collapse
|
11
|
Bilal RMH, Saeed MA, Naveed MA, Zubair M, Mehmood MQ, Massoud Y. Nickel-Based High-Bandwidth Nanostructured Metamaterial Absorber for Visible and Infrared Spectrum. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3356. [PMID: 36234486 PMCID: PMC9565679 DOI: 10.3390/nano12193356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The efficient control of optical light at the nanoscale level attracts marvelous applications, including thermal imaging, energy harvesting, thermal photovoltaics, etc. These applications demand a high-bandwidth, thermally robust, angularly stable, and miniaturized absorber, which is a key challenge to be addressed. So, in this study, the simple and cost-effective solution to attain a high-bandwidth nanostructured absorber is demonstrated. The designed nanoscale absorber is composed of a simple and plain circular ring of nickel metal, which possesses many interesting features, including a miniaturized geometry, easily fabricable design, large operational bandwidth, and polarization insensitivity, over the previously presented absorbers. The proposed nanoscale absorber manifests an average absorption of 93% over a broad optical window from 400 to 2800 nm. Moreover, the detailed analysis of the absorption characteristics is also performed by exciting the optical light's various incident and polarization angles. From the examined outcome, it is concluded that the nanostructured absorber maintains its average absorption of 80% at oblique incident angles in a broad wavelength range from 400 to 2800 nm. Owing to its appealing functionalities, such as the large bandwidth, simple geometry, low cost, polarization insensitivity, and thermal robustness of the constituting metal, nickel (Ni), this nano-absorber is made as an alternative for the applications of energy harvesting, thermal photovoltaics, and emission.
Collapse
Affiliation(s)
- Rana Muhammad Hasan Bilal
- Innovative Technologies Laboratories (ITL), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | | | - Muhammad Ashar Naveed
- Innovative Technologies Laboratories (ITL), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Muhammad Zubair
- Innovative Technologies Laboratories (ITL), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Muhammad Qasim Mehmood
- Innovative Technologies Laboratories (ITL), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Yehia Massoud
- Innovative Technologies Laboratories (ITL), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
12
|
Shafqat MD, Mahmood N, Zubair M, Mehmood MQ, Massoud Y. Highly Efficient Perfect Vortex Beams Generation Based on All-Dielectric Metasurface for Ultraviolet Light. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3285. [PMID: 36234413 PMCID: PMC9565325 DOI: 10.3390/nano12193285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Featuring shorter wavelengths and high photon energy, ultraviolet (UV) light enables many exciting applications including photolithography, sensing, high-resolution imaging, and optical communication. The conventional methods of UV light manipulation through bulky optical components limit their integration in fast-growing on-chip systems. The advent of metasurfaces promised unprecedented control of electromagnetic waves from microwaves to visible spectrums. However, the availability of suitable and lossless dielectric material for the UV domain hindered the realization of highly efficient UV metasurfaces. Here, a bandgap-engineered silicon nitride (Si3N4) material is used as a best-suited candidate for all-dielectric highly efficient UV metasurfaces. To demonstrate the wavefront manipulation capability of the Si3N4 for the UV spectrum, we design and numerically simulate multiple all-dielectric metasurfaces for the perfect vortex beam generation by combing multiple phase profiles into a single device. For different numerical apertures (NA =0.3 and 0.7), it is concluded that the diffracted light from the metasurfaces with different topological charges results in an annular intensity profile with the same ring radius. It is believed that the presented Si3N4 materials and proposed design methodology for PV beam-generating metasurfaces will be applicable in various integrated optical and nanophotonic applications such as information processing, high-resolution spectroscopy, and on-chip optical communication.
Collapse
|
13
|
Liu Y, Zhou C, Guo K, Wei Z, Liu H. Generation of multi-channel perfect vortex beams with the controllable ring radius and the topological charge based on an all-dielectric transmission metasurface. OPTICS EXPRESS 2022; 30:30881-30893. [PMID: 36242184 DOI: 10.1364/oe.468616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/29/2022] [Indexed: 06/16/2023]
Abstract
The perfect vortex (PV) beam, characterized by carrying orbital angular momentum and a radial electric intensity distribution independent of the topological charge, has important applications in optical communication, particle manipulation, and quantum optics. Conventional methods of generating PV beams require a series of bulky optical elements that are tightly collimated with each other, adding to the complexity of optical systems. Here, making the amplitude of transmitted co-polarized and cross-polarized components to be constant, all-dielectric transmission metasurfaces with superimposed phase profiles integrating spiral phase plate, axicon and Fourier lens are constructed based on the phase-only modulation method. Using mathematical derivation and numerical simulation, multi-channel PV beams with controllable annular ring radius and topological charge are realized for the first time under circularly polarized light incidence combining the propagation phase and geometric phase. Meanwhile, perfect vector vortex beams are produced by superposition of PV beams under the incidence of left-handed circularly polarized and right-handed circularly polarized lights, respectively. This work provides a new perspective on generating tailored PV beams, increasing design flexibility and facilitating the construction of compact, integrated, and versatile nanophotonics platforms.
Collapse
|
14
|
Javed I, Kim J, Naveed MA, Oh DK, Jeon D, Kim I, Zubair M, Massoud Y, Mehmood MQ, Rho J. Broad-Band Polarization-Insensitive Metasurface Holography with a Single-Phase Map. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36019-36026. [PMID: 35912417 DOI: 10.1021/acsami.2c07960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The remarkable potential of metasurface holography promises revolutionary advancements for imaging, chip-integrated augmented/virtual reality (AR/VR) technology, and flat optical displays. The choice of constituent element geometry constrains many potential applications purveyed through polarization-independent optical response. The limited capabilities and degree of freedoms in commonly used meta-atoms restrict the design flexibility to break the conventional trade-off between polarization-insensitivity and bandwidth. Here, we propose a geometric phase-enabled novel design strategy to break this conventional trade-off. The proposed strategy ensures the realization of broad-band polarization-insensitivity through a simplified design procedure. An identical output wavefront manipulation is achieved by adjusting the phase delay freedom of geometric phase engineering under different incident polarization conditions. For proof of concept, a metahologram device is fabricated by an optimized complementary metal-oxide-semiconductor (CMOS)-compatible material of hydrogenated amorphous silicon (a-Si:H). This metahologram device reproduces the required hologram with high image fidelity and efficiency under different polarization scenarios of white light incidence. Due to the simple design strategy, low computational cost, and easy fabrication, the proposed technique can be an excellent candidate for realizing polarization-insensitive metahologram devices.
Collapse
Affiliation(s)
- Isma Javed
- MicroNano Lab, Electrical Engineering Department, Information Technology University (ITU) of the Punjab, Lahore 54600, Pakistan
| | - Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Muhammad Ashar Naveed
- MicroNano Lab, Electrical Engineering Department, Information Technology University (ITU) of the Punjab, Lahore 54600, Pakistan
| | - Dong Kyo Oh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dongmin Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Inki Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Muhammad Zubair
- MicroNano Lab, Electrical Engineering Department, Information Technology University (ITU) of the Punjab, Lahore 54600, Pakistan
| | - Yehia Massoud
- Innovative Technologies Laboratories (ITL), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Muhammad Qasim Mehmood
- MicroNano Lab, Electrical Engineering Department, Information Technology University (ITU) of the Punjab, Lahore 54600, Pakistan
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
- National Institute of Nanomaterials Technology (NINT), Pohang 37673, Republic of Korea
| |
Collapse
|