1
|
Singh C, Jha CB, Anand AS, Kohli E, Manav N, Varshney R, Upadhyayula S, Mathur R. Copper-Based Metal-Organic Framework as a Potential Therapeutic Gas Carrier: Optimization, Synthesis, Characterization, and Computational Studies. ACS APPLIED BIO MATERIALS 2025; 8:2440-2458. [PMID: 39971623 DOI: 10.1021/acsabm.4c01907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The broad spectrum of health conditions and the global pandemic, leading to inadequate medical oxygen supply and management, has driven interest in developing porous nanocarriers for effective oxygenation strategies. We aim to develop an injectable oxygen carrier with regard to biocompatibility, safety, prehospital availability, and universal applicability. In this study, we have tried to identify important functional sites on metal-organic frameworks (MOFs) for gas binding with the help of Grand canonical Monte Carlo simulation. We have synthesized a copper-based MOF (Cu-BTC) with a 1,3,5-benzenetricarboxylic acid linker through a solvothermal approach as a competent porous adsorbent for oxygen storage and delivery. To optimize process variables, we performed statistical analysis using response surface methodology. A quadratic model was developed to study the interaction between independent variables and the response (i.e., maximizing surface area), whose adequacy is validated by the correlation between experimental and predicted values using the ANOVA method. The synthesized Cu-BTC, before and after oxygen loading, was characterized using X-ray diffraction, surface area, along with pore distribution measurement, particle size analysis, scanning electron microscopy, transmission electron microscopy, and gas adsorption studies. The Cu-BTC MOF exhibited an oxygen uptake of 4.6 mmol g-1, the highest among all the oxygen carriers reported in the literature under the same operating conditions. Overall, our findings suggest that this synthesized Cu-BTC with high surface area (1389 m2 g-1), high porosity, optimum oxygen uptake, and good biocompatibility would show potential toward efficient storage and delivery (direct to the targeted site) of medical oxygen to raise the blood oxygen saturation level.
Collapse
Affiliation(s)
- Chitrangda Singh
- Applied Chemistry and Nanomaterial Science Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Timarpur, New Delhi 110054, India
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Chandan Bhogendra Jha
- Applied Chemistry and Nanomaterial Science Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Timarpur, New Delhi 110054, India
| | - Avnika Singh Anand
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Timarpur, New Delhi 110054, India
| | - Ekta Kohli
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Timarpur, New Delhi 110054, India
| | - Neha Manav
- Applied Chemistry and Nanomaterial Science Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Timarpur, New Delhi 110054, India
| | - Raunak Varshney
- Applied Chemistry and Nanomaterial Science Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Timarpur, New Delhi 110054, India
| | - Sreedevi Upadhyayula
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Rashi Mathur
- Applied Chemistry and Nanomaterial Science Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Timarpur, New Delhi 110054, India
| |
Collapse
|
2
|
Guo L, Han X, Li J, Li W, Chen Y, Manuel P, Schröder M, Yang S. Boosting Adsorption and Selectivity of Acetylene by Nitro Functionalisation in Copper(II)-Based Metal-Organic Frameworks. Angew Chem Int Ed Engl 2025; 64:e202417183. [PMID: 39627161 PMCID: PMC11795735 DOI: 10.1002/anie.202417183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
Purification and storage of acetylene (C2H2) are important to many industrial processes. The exploitation of metal-organic framework (MOF) materials to address the balance between selectivity for C2H2 vs carbon dioxide (CO2) against maximising uptake of C2H2 has attracted much interest. Herein, we report that the synergy between unsaturated Cu(II) sites and functional groups, fluoro (-F), methyl (-CH3), nitro (-NO2) in a series of isostructural MOF materials MFM-190(R) that show exceptional adsorption and selectivity of C2H2. At 298 K, MFM-190(NO2) exhibits an C2H2 uptake of 216 cm3 g-1 (320 cm3 g-1 at 273 K) at 1.0 bar and a high selectivity for C2H2/CO2 (up to ~150 for v/v = 2/1) relevant to that in the industrial cracking stream. Dynamic breakthrough studies validate and confirm the excellent separation of C2H2/CO2 by MFM-190(NO2) under ambient conditions. In situ neutron powder diffraction reveals the cooperative binding, packing and selectivity of C2H2 by unsaturated Cu(II) sites and free -NO2 groups.
Collapse
Affiliation(s)
- Lixia Guo
- College of Chemistry and Molecular EngineeringBeijing National Laboratory for Molecular SciencesPeking UniversityBeijing100871China
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Xue Han
- College of ChemistryBeijing Normal UniversityBeijing100875China
| | - Jiangnan Li
- College of Chemistry and Molecular EngineeringBeijing National Laboratory for Molecular SciencesPeking UniversityBeijing100871China
| | - Weiyao Li
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Yinlin Chen
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Pascal Manuel
- ISIS FacilityRutherford Appleton LaboratoryChiltonOX11 0QXUK
| | - Martin Schröder
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Sihai Yang
- College of Chemistry and Molecular EngineeringBeijing National Laboratory for Molecular SciencesPeking UniversityBeijing100871China
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| |
Collapse
|
3
|
Jeong SM, Kim D, Park JY, Yoon JW, Lee SK, Lee JS, Jo D, Cho KH, Lee UH. Separation of High-Purity C 2H 2 from Binary C 2H 2/CO 2 Using Robust Al-Based MOFs Comprising Nitrogen-Containing Heterocyclic Dicarboxylate. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1342-1350. [PMID: 38116929 DOI: 10.1021/acsami.3c16849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
In this study, three nitrogen-containing aluminum-based metal-organic frameworks (Al-MOFs), namely, CAU-10pydc, MOF-303, and KMF-1, were investigated for the efficient separation of a C2H2/CO2 gas mixture. Among these three Al-MOFs, KMF-1 demonstrated the highest selectivity for C2H2/CO2 separation (6.31), primarily owing to its superior C2H2 uptake (7.90 mmol g-1) and lower CO2 uptake (2.82 mmol g-1) compared to that of the other two Al-MOFs. Dynamic breakthrough experiments, using an equimolar binary C2H2/CO2 gas mixture, demonstrated that KMF-1 achieved the highest separation performance. It yielded 3.42 mmol g-1 of high-purity C2H2 (>99.95%) through a straightforward desorption process under He purging at 298 K and 1 bar. To gain insights into the distinctive characteristics of the pore surfaces of structurally similar CAU-10pydc and KMF-1, we conducted computational simulations using canonical Monte Carlo and dispersion-corrected density functional theory methods. These simulations revealed that the secondary amine (C2N-H) groups in KMF-1 played a more significant role in differentiating between C2H2 and CO2 compared to that of the N atoms in CAU-10pydc and MOF-303. Consequently, KMF-1 emerged as a promising adsorbent for the separation of high-purity C2H2 from binary C2H2/CO2 gas mixtures.
Collapse
Affiliation(s)
- Se-Min Jeong
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Sogang University, Baekbeom-Ro 35, Mapo-gu, Seoul 04107, Republic of Korea
| | - Donghyun Kim
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-Ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ju Yeon Park
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Ji Woong Yoon
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Su-Kyung Lee
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Jong Suk Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Baekbeom-Ro 35, Mapo-gu, Seoul 04107, Republic of Korea
| | - Donghui Jo
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Kyung Ho Cho
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - U-Hwang Lee
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Gajeong-Ro 217, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
4
|
Zhang JQ, Wang YH, Zhang SJ, Lin YQ, Guan QQ, Xu XM. Anchoring ultrasmall Pd nanoparticles by bipyridine functional covalent organic frameworks for semihydrogenation of acetylene. RSC Adv 2023; 13:24628-24638. [PMID: 37601589 PMCID: PMC10433448 DOI: 10.1039/d3ra03552b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023] Open
Abstract
Acetylene hydrogenation is a well-accepted solution to reduce by-products in the ethylene production process, while one of the key technical difficulties lies in developing a catalyst that can provide highly dispersed active sites. In this work, a highly crystalline layered covalent organic framework (COF) material (TbBpy) with excellent thermal stability was synthesized and firstly applied as support for ultrasmall Pd nanoparticles to catalyze acetylene hydrogenation. 100% of C2H2 conversion and 88.2% of C2H4 selectivity can be obtained at 120 °C with the space velocity of 70 000 h-1. The reaction mechanism was elucidated by applying a series of characterization techniques and theoretical calculation. The results indicate that the coordination between Pd and N atom in the bipyridine functional groups of COFs successfully increased the dispersibility and stability of Pd particles, and the introduction of COFs not only improved the adsorption of acetylene and H2 onto catalyst surface, but enhanced the electron transfer process, which can be responsible for the high selectivity and activity of catalyst. This work, for the first time, reported the excellent performance of Pd@TbBpy as a catalyst for acetylene hydrogenation and will facilitate the development and application of COFs materials in the area of petrochemicals.
Collapse
Affiliation(s)
- Ji-Qiu Zhang
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology Kunming 650500 PR China
| | - Yu-Hao Wang
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology Kunming 650500 PR China
| | - Shu-Jing Zhang
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology Kunming 650500 PR China
| | - Yang-Qian Lin
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology Kunming 650500 PR China
| | - Qing-Qing Guan
- School of Chemical Engineering and Technology, Xinjiang University Urumqi Xinjiang 830046 PR China
| | - Xi-Meng Xu
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology Kunming 650500 PR China
| |
Collapse
|
5
|
Su RH, Shi WJ, Zhang XY, Hou L, Wang YY. Cu-MOFs with Rich Open Metal and F Sites for Separation of C 2H 2 from CO 2 and CH 4. Inorg Chem 2023. [PMID: 37450355 DOI: 10.1021/acs.inorgchem.3c01203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Herein, we used the 4-fluoro-[1,1'-biphenyl]-3,4',5-tricarboxylic acid (H3fbptc) ligand to design and construct a new metal-organic framework (MOF), [Cu3(fbptc)2(H2O)3]·3NMP (1), which possesses rich accessible metal sites and F functional groups in the porous walls and shows high uptake for C2H2 (119.3 cm3 g-1) and significant adsorption selectivity for C2H2 over CH4 (14.4) and CO2 (3.6) at 298 K and 100 kPa. In particular, for the gas mixtures of C2H2-CH4 and C2H2-CO2, the MOF reveals large breakthrough time ratios (C2H2/CH4 = 13, C2H2/CO2 = 5.9), which are particularly prominent in dynamic breakthrough experiments, also confirming the excellent potential for the practical separation of C2H2 from two-component mixtures (C2H2-CH4 and C2H2-CO2) and even three-component mixtures (C2H2-CO2-CH4).
Collapse
Affiliation(s)
- Run-Han Su
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Wen-Juan Shi
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Xiao-Yu Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
6
|
Han X, Yang S. Molecular Mechanisms behind Acetylene Adsorption and Selectivity in Functional Porous Materials. Angew Chem Int Ed Engl 2023; 62:e202218274. [PMID: 36718911 DOI: 10.1002/anie.202218274] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Since its first industrial production in 1890s, acetylene has played a vital role in manufacturing a wide spectrum of materials. Although current methods and infrastructures for various segments of acetylene industries are well-established, with emerging functional porous materials that enabled desired selectivity toward target molecules, it is of timely interest to develop new efficient technologies to promote safer acetylene processes with a higher energy efficiency and lower carbon footprint. In this Minireview, we, from the perspective of materials chemistry, review state-of-the-art examples of advanced porous materials, namely metal-organic frameworks and decorated zeolites, that have been applied to the purification and storage of acetylene. We also discuss the challenges on the roadmap of translational research in the development of new solid sorbent-based separation technologies and highlight areas which require future research efforts.
Collapse
Affiliation(s)
- Xue Han
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, UK
| | - Sihai Yang
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
7
|
Zhu X, Ke T, Zhou J, Song Y, Xu Q, Zhang Z, Bao Z, Yang Y, Ren Q, Yang Q. Vertex Strategy in Layered 2D MOFs: Simultaneous Improvement of Thermodynamics and Kinetics for Record C 2H 2/CO 2 Separation Performance. J Am Chem Soc 2023; 145:9254-9263. [PMID: 37053465 DOI: 10.1021/jacs.3c01784] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Developing adsorbents with multiple merits in capacity, selectivity, mass transfer, and stability toward C2H2/CO2 separation is crucial and challenging for producing high-purity C2H2 for advanced polymers and the electronic industry. Here, we demonstrate a vertex strategy to create adsorbents combining these merits through rationally designing the vertex groups of a wavy-shaped framework in layered 2D metal-organic frameworks (MOFs) to finely regulate the local conformation and stacking interactions, which creates the optimal inter- and intralayer space to realize simultaneous improvement of adsorption thermodynamics and kinetics. Two new hydrolytically stable MOFs, ZUL-330 and ZUL-430, were prepared, and diverse experiments and modeling on both adsorption equilibrium and diffusion were performed. Record separation selectivities coupled with extraordinary dynamic C2H2 capacities were achieved for C2H2/CO2 mixtures with different proportions (50/50 or 10/5, v/v), along with a small diffusion barrier and fast mass transfer. Consequently, polymer-grade (99.9%) and electronic-grade (99.99%) C2H2 were obtained with excellent productivities of up to ∼6 mmol cm-3.
Collapse
Affiliation(s)
- Xiaoqian Zhu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
| | - Tian Ke
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
| | - Jingyi Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
| | - Yifei Song
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, Zhejiang, China
| | - Qianqian Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
- School of Pharmaceutical and Materials Engineering, Taizhou University, 318000 Taizhou, China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, Zhejiang, China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, Zhejiang, China
| | - Yiwen Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, Zhejiang, China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, Zhejiang, China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, Zhejiang, China
| |
Collapse
|
8
|
Xiang F, Zhang H, Yang Y, Li L, Que Z, Chen L, Yuan Z, Chen S, Yao Z, Fu J, Xiang S, Chen B, Zhang Z. Tetranuclear Cu II Cluster as the Ten Node Building Unit for the Construction of a Metal-Organic Framework for Efficient C 2 H 2 /CO 2 Separation. Angew Chem Int Ed Engl 2023; 62:e202300638. [PMID: 36726350 DOI: 10.1002/anie.202300638] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/03/2023]
Abstract
Rational design of high nuclear copper cluster-based metal-organic frameworks has not been established yet. Herein, we report a novel MOF (FJU-112) with the ten-connected tetranuclear copper cluster [Cu4 (PO3 )2 (μ2 -H2 O)2 (CO2 )4 ] as the node which was capped by the deprotonated organic ligand of H4 L (3,5-Dicarboxyphenylphosphonic acid). With BPE (1,2-Bis(4-pyridyl)ethane) as the pore partitioner, the pore spaces in the structure of FJU-112 were divided into several smaller cages and smaller windows for efficient gas adsorption and separation. FJU-112 exhibits a high separation performance for the C2 H2 /CO2 separation, which were established by the temperature-dependent sorption isotherms and further confirmed by the lab-scale dynamic breakthrough experiments. The grand canonical Monte Carlo simulations (GCMC) studies show that its high C2 H2 /CO2 separation performance is contributed to the strong π-complexation interactions between the C2 H2 molecules and framework pore surfaces, leading to its more C2 H2 uptakes over CO2 molecules.
Collapse
Affiliation(s)
- Fahui Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China.,Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Key Laboratory of Agro-Products Quality and Safety, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Hao Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Yisi Yang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Lu Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Zhenni Que
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Liangji Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Zhen Yuan
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Shimin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Zizhu Yao
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Jianwei Fu
- Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Key Laboratory of Agro-Products Quality and Safety, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
9
|
Lv H, Fan L, Hu T, Jiao C, Zhang X. A highly robust cluster-based indium(III)-organic framework with efficient catalytic activity in cycloaddition of CO 2 and Knoevenagel condensation. Dalton Trans 2023; 52:3420-3430. [PMID: 36815544 DOI: 10.1039/d2dt04043c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The efficient catalytic performance displayed by MOFs is decided by an appropriate charge/radius ratio of defect metal sites, large enough solvent-accessible channels and Lewis base sites capable of polarizing substrate molecules. Herein, the solvothermal self-assembly led to a highly robust nanochannel-based framework of {[In4(CPDD)2(μ3-OH)2(DMF)(H2O)2]·2DMF·5H2O}n (NUC-66) with a 56.8% void volume, which is a combination of a tetranuclear cluster [In4(μ3-OH)2(COO)10(DMF)(H2O)2] (abbreviated as {In4}) and a conjugated tetracyclic pentacarboxylic acid ligand of 4,4'-(4-(4-carboxyphenyl)pyridine-2,6-diyl)diisophthalic acid (H5CPDD). To the best of our knowledge, NUC-66 is a rarely reported {In4}-based 3D framework with embedded hierarchical triangular-microporous (2.9 Å) and hexagonal-nanoporous (12.0 Å) channels, which are shaped by six rows of {In4} clusters. After solvent exchange and vacuum drying, the surface of nanochannels in desolvated NUC-66a is modified by unsaturated In3+ ions, Npyridine atoms and μ3-OH groups, all of which display polarization ability towards polar molecules due to their Lewis acidity or basicity. The catalytic experiments performed showed that NUC-66a had high catalytic activity in the cycloaddition reactions of epoxides with CO2 under mild conditions, which should be ascribed to its structural advantages including nanoscale channels, rich bifunctional active sites, large surface areas and chemical stability. Moreover, NUC-66a, as a heterogeneous catalyst, could greatly accelerate the Knoevenagel condensation reactions of aldehydes and malononitrile. Hence, this work confirms that the development of rigid nanoporous cluster-based MOFs built on metal ions with a high charge and large radius ratio will be more likely to realize practical applications, such as catalysis, adsorption and separation of gas, etc.
Collapse
Affiliation(s)
- Hongxiao Lv
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China.
| | - Liming Fan
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China.
| | - Tuoping Hu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China.
| | - Chenxu Jiao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China.
| | - Xiutang Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China.
| |
Collapse
|
10
|
Li YP, Ni JJ, Fan SC, Zhai QG. Auxiliary Ligand-Directed Assembly of a Non-Interpenetrated Cage-within-Cage Metal-Organic Framework for Highly Efficient C2H2/CO2 Separation. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
11
|
Zhang YZ, Kong XJ, Zhou WF, Li CH, Hu H, Hou H, Liu Z, Geng L, Huang H, Zhang X, Zhang DS, Li JR. Pore Environment Optimization of Microporous Metal-Organic Frameworks with Huddled Pyrazine Pillars for C 2H 2/CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4208-4215. [PMID: 36625524 DOI: 10.1021/acsami.2c19779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs) have been proven promising in addressing many critical issues related to gas separation and purification. However, it remains a great challenge to optimize the pore environment of MOFs for purification of specific gas mixtures. Herein, we report the rational construction of three isostructural microporous MOFs with the 4,4',4"-tricarboxyltriphenylamine (H3TCA) ligand, unusual hexaprismane Ni6O6 cluster, and functionalized pyrazine pillars [PYZ-x, x = -H (DZU-10), -NH2 (DZU-11), and -OH (DZU-12)], where the building blocks of Ni6O6 clusters and huddled pyrazine pillars are reported in porous MOFs for the first time. These building blocks have enabled the resulting materials to exhibit good chemical stability and variable pore chemistry, which thus contribute to distinct performances toward C2H2/CO2 separation. Both single-component isotherms and dynamic column breakthrough experiments demonstrate that DZU-11 with the PYZ-NH2 pillar outperforms its hydrogen and hydroxy analogues. Density functional theory calculations reveal that the higher C2H2 affinity of DZU-11 over CO2 is attributed to multiple electrostatic interactions between C2H2 and the framework, including strong C≡C···H-N (2.80 Å) interactions. This work highlights the potential of pore environment optimization to construct smart MOF adsorbents for some challenging gas separations.
Collapse
Affiliation(s)
- Yong-Zheng Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Xiang-Jing Kong
- Bernal Institute and Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Wen-Feng Zhou
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Chun-Hui Li
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Hui Hu
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Hengnuo Hou
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Zhongmin Liu
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Longlong Geng
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, P. R. China
| | - Xiuling Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Da-Shuai Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| |
Collapse
|
12
|
Yue L, Wang X, Lv C, Zhang T, Li B, Chen DL, He Y. Substituent Engineering-Enabled Structural Rigidification and Performance Improvement for C 2/CO 2 Separation in Three Isoreticular Coordination Frameworks. Inorg Chem 2022; 61:21076-21086. [PMID: 36508728 DOI: 10.1021/acs.inorgchem.2c03657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Construction of porous solid materials applied to the adsorptive removal of CO2 from C2 hydrocarbons is highly demanded thanks to the important role C2 hydrocarbons play in the chemical industry but quite challenging owing to the similar physical parameters between C2 hydrocarbons and CO2. In particular, the development of synthetic strategies to simultaneously enhance the uptake capacity and adsorption selectivity is very difficult due to the trade-off effect frequently existing between both of them. In this work, a combination of the dicopper paddlewheel unit and 4-pyridylisophthalate derivatives bearing different substituents afforded an isoreticular family of coordination framework compounds as a platform. Their adsorption properties toward C2 hydrocarbons and CO2 were systematically investigated, and subsequent IAST and density functional theory calculations combined with column breakthrough experiments verified their promising potential for C2/CO2 separations. Furthermore, the substituent engineering endowed the resulting compounds with simultaneous enhancement of uptake capacity and adsorption selectivity and thus better C2/CO2 separation performance compared to their parent compound. The substituent introduction not only mitigated the framework distortion via fixing the ligand conformation for establishment of better permanent porosity required for gas adsorption but also polarized the framework surface for host-guest interaction improvement, thus resulting in enhanced separation performance.
Collapse
Affiliation(s)
- Lianglan Yue
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xinxin Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Chao Lv
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Ting Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Bing Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - De-Li Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Yabing He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
13
|
Li Y, Xie Y, Zhang X, Velasco E, Chen Q, Li JR. Enhancing Ethane/Ethylene Separation Performance in Two Dynamic MOFs by Regulating Temperature-Controlled Structural Interpenetration. Inorg Chem 2022; 62:4762-4769. [DOI: 10.1021/acs.inorgchem.2c03368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yi Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yabo Xie
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Xin Zhang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Ever Velasco
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Qiang Chen
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|