1
|
Redondo-Gómez C, Parreira P, Martins MCL, Azevedo HS. Peptide-based self-assembled monolayers (SAMs): what peptides can do for SAMs and vice versa. Chem Soc Rev 2024; 53:3714-3773. [PMID: 38456490 DOI: 10.1039/d3cs00921a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Self-assembled monolayers (SAMs) represent highly ordered molecular materials with versatile biochemical features and multidisciplinary applications. Research on SAMs has made much progress since the early begginings of Au substrates and alkanethiols, and numerous examples of peptide-displaying SAMs can be found in the literature. Peptides, presenting increasing structural complexity, stimuli-responsiveness, and biological relevance, represent versatile functional components in SAMs-based platforms. This review examines the major findings and progress made on the use of peptide building blocks displayed as part of SAMs with specific functions, such as selective cell adhesion, migration and differentiation, biomolecular binding, advanced biosensing, molecular electronics, antimicrobial, osteointegrative and antifouling surfaces, among others. Peptide selection and design, functionalisation strategies, as well as structural and functional characteristics from selected examples are discussed. Additionally, advanced fabrication methods for dynamic peptide spatiotemporal presentation are presented, as well as a number of characterisation techniques. All together, these features and approaches enable the preparation and use of increasingly complex peptide-based SAMs to mimic and study biological processes, and provide convergent platforms for high throughput screening discovery and validation of promising therapeutics and technologies.
Collapse
Affiliation(s)
- Carlos Redondo-Gómez
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal.
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
| | - Paula Parreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal.
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
| | - M Cristina L Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal.
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Helena S Azevedo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal.
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
| |
Collapse
|
2
|
Du C, Woolcott S, Wahba AS, Hamry SR, Odette WL, Thibodeaux CJ, Marchand P, Mauzeroll J. Evaluation of Quatsome Morphology, Composition, and Stability for Pseudomonas aeruginosa Biofilm Eradication. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1623-1632. [PMID: 38194503 DOI: 10.1021/acs.langmuir.3c02491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Biofilm infections are a major cause of food poisoning and hospital-acquired infections. Quaternary ammonium compounds are a group of effective disinfectants widely used in industry and households, yet their efficacy is lessened when used as antibiofilm agents compared to that against planktonic bacteria. It is therefore necessary to identify alternative formulations of quaternary ammonium compounds to achieve an effective biofilm dispersal. Quaternary ammonium amphiphiles can form vesicular structures termed "quatsomes" in the presence of cholesterol. In addition to their intrinsic antimicrobial properties, quatsomes can also be used for the delivery of other types of antibiotics or biomarkers. In this study, quatsomes were prepared from binary mixtures of cholesterol and mono- or dialkyl-quaternary ammonium compounds; then, the integrity and stability of their vesicular structure were assessed and related to monomer chain number and chain length. The quatsomes were used to treat Pseudomonas aeruginosa biofilms, showing effective antibiofilm abilities comparable to those of their monomers. A systematic liquid chromatography-mass spectrometry method for quantifying quatsome vesicle components was also developed and used to establish the significance of cholesterol in the quatsome self-assembly processes.
Collapse
Affiliation(s)
- Changyue Du
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Sascha Woolcott
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | | | - Sally R Hamry
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - William L Odette
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | | | - Patrick Marchand
- Sani-Marc Group, 42 Rue De L'Artisan, Victoriaville, Quebec G6P 7E3, Canada
| | - Janine Mauzeroll
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
3
|
Bordignon N, Köber M, Chinigò G, Pontremoli C, Sansone E, Vargas-Nadal G, Moran Plata MJ, Fiorio Pla A, Barbero N, Morla-Folch J, Ventosa N. Quatsomes Loaded with Squaraine Dye as an Effective Photosensitizer for Photodynamic Therapy. Pharmaceutics 2023; 15:902. [PMID: 36986763 PMCID: PMC10057727 DOI: 10.3390/pharmaceutics15030902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
Photodynamic therapy is a non-invasive therapeutic strategy that combines external light with a photosensitizer (PS) to destroy abnormal cells. Despite the great progress in the development of new photosensitizers with improved efficacy, the PS's photosensitivity, high hydrophobicity, and tumor target avidity still represent the main challenges. Herein, newly synthesized brominated squaraine, exhibiting intense absorption in the red/near-infrared region, has been successfully incorporated into Quatsome (QS) nanovesicles at different loadings. The formulations under study have been characterized and interrogated in vitro for cytotoxicity, cellular uptake, and PDT efficiency in a breast cancer cell line. The nanoencapsulation of brominated squaraine into QS overcomes the non-water solubility limitation of the brominated squaraine without compromising its ability to generate ROS rapidly. In addition, PDT effectiveness is maximized due to the highly localized PS loadings in the QS. This strategy allows using a therapeutic squaraine concentration that is 100 times lower than the concentration of free squaraine usually employed in PDT. Taken together, our results reveal the benefits of the incorporation of brominated squaraine into QS to optimize their photoactive properties and support their applicability as photosensitizer agents for PDT.
Collapse
Affiliation(s)
- Nicolò Bordignon
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, 08193 Catalonia, Spain
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Turin, Italy
| | - Mariana Köber
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, 08193 Catalonia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 08193 Bellaterra, Spain
| | - Giorgia Chinigò
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Turin, Italy
| | - Carlotta Pontremoli
- Department of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Torino, Via Quarello 15a, 10135 Turin, Italy
| | - Ettore Sansone
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Turin, Italy
| | - Guillem Vargas-Nadal
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, 08193 Catalonia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 08193 Bellaterra, Spain
| | - Maria Jesus Moran Plata
- Department of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Torino, Via Quarello 15a, 10135 Turin, Italy
| | - Alessandra Fiorio Pla
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Turin, Italy
| | - Nadia Barbero
- Department of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Torino, Via Quarello 15a, 10135 Turin, Italy
| | - Judit Morla-Folch
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, 08193 Catalonia, Spain
| | - Nora Ventosa
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, 08193 Catalonia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 08193 Bellaterra, Spain
| |
Collapse
|