1
|
Cheng P, Hong J, Zhu X, Cheng B, Song L, Zhou X, Wen P. Electric-Ray-Inspired Universal Island-Bridge Structure for Transforming Nonpyroelectric Substrates into Pyroelectric Sensors. ACS Sens 2025; 10:1123-1134. [PMID: 39937156 DOI: 10.1021/acssensors.4c02974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Large-area, flexible pyroelectric sensors have received increasing attention in a range of applications including electronic skin, robotics, and military. However, existing flexible pyroelectric sensors struggle to achieve both high pyroelectric performance and excellent mechanical properties simultaneously. Here, we propose a universal island-bridge percolation structure inspired by the electric organ of the electric ray that can enable flexible nonpyroelectric substrates with excellent mechanical properties to generate a pyroelectric effect. The island-bridge percolation network structure made of pyroelectric particles (island) and carboxyl-functionalized multiwalled carbon nanotubes (bridge) achieved the transmission and superposition of the pyroelectric effect through the film polarization and percolation effect. The pyroelectric sensor based on the island-bridge percolation network structure not only inherits the pyroelectric properties of the pyroelectric particles but also inherits the excellent mechanical properties of the nonpyroelectric substrates. The flexible pyroelectric sensors fabricated from polydimethylsiloxane (PDMS) substrates exhibit a good pyroelectric effect and excellent mechanical reliability even under 30% tensile rate and 5,000 tensile-retraction cycles, and those made from polyimide (PI) substrates can serve as electronic skin for robots to detect heat sources and possess infrared sensing properties with a maximum distance of 8 cm. This study provides ideas to fabricate flexible pyroelectric sensors with highly flexible and high-performance properties.
Collapse
Affiliation(s)
- Peng Cheng
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China
| | - Jinhua Hong
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China
| | - Xiaohui Zhu
- Wuhan Huaweike Intelligent Technology Co., Ltd., Wuhan 430000, China
| | - Bao Cheng
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China
| | - Lei Song
- Contemporary Amperex Technology Co., Limited, Ningde 352000, China
| | - Xu Zhou
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China
| | - Peng Wen
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China
| |
Collapse
|
2
|
Zhou Q, Yue J, Fang D, Zhou B, Ji B, Yang J. Bioinspired Tilted Magnetized Flakes as a Self-Powered and Antislip Smart Outsole for Healthcare Monitoring and Human-Machine Interaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64197-64209. [PMID: 39527728 DOI: 10.1021/acsami.4c13206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Footwear smart devices capable of reliably capturing body actions and conveniently transmitting human-made information are of great interest to advance healthcare monitoring, human-machine interactions (HMIs), etc. while remaining challenging. Herein, we present a self-powered, antislip, and multifunctional smart outsole based on the gecko toe-inspired tilted magnetized flakes (TMFs) and underlying flexible coils. With the pressure-induced flake deflection and the built-in magnetic moment alignment, the TMF can produce a variable magnetic field to induce the voltage signals in coils for precise pressure perception and linear velocity sensing. The TMF-based smart outsole can thus serve as a real-time footwear recorder to monitor various body actions for exercise analysis and to track the abnormal landing speed for alerting potential injuries. The gecko toe-like flakes also enable the excellent antislip capability of the outsole with a much higher friction coefficient than the standard one of the low slip risk. By programming the magnetic moment alignments of the TMFs, a single-circuit outsole can further output multiple signals as encoded instructions for controlling the racing game. Along with excellent abrasion resistance and environmental immunity, the proposed outsole exhibits great potential as a convenient platform for reliable healthcare monitoring and efficient HMI.
Collapse
Affiliation(s)
- Qian Zhou
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, Hunan 410083, China
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, China
| | - Jingyi Yue
- Key Laboratory of Low Dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Dan Fang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Bing Ji
- Key Laboratory of Low Dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Junliang Yang
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, Hunan 410083, China
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
3
|
Wang Y, Cai L, Fan L, Wang L, Bian F, Sun W, Zhao Y. Electrical Microneedles for Wound Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409519. [PMID: 39514411 DOI: 10.1002/advs.202409519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/20/2024] [Indexed: 11/16/2024]
Abstract
Electrical stimulation has been hotpot research and provoked extensive interest in a broad application such as wound closure, tissue injury repair, and nerve engineering. In particular, immense efforts have been dedicated to developing electrical microneedles, which demonstrate unique features in terms of controllable drug release, real-time monitoring, and therapy, thus greatly accelerating the process of wound healing. Here, a review of state-of-art research concerning electrical microneedles applied for wound treatment is presented. After a comprehensive analysis of the mechanisms of electrical stimulation on wound healing, the derived three types of electrical microneedles are clarified and summarized. Further, their applications in wound healing are highlighted. Finally, current perspectives and directions for the development of future electrical microneedles in improving wound healing are addressed.
Collapse
Affiliation(s)
- Yu Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Lijun Cai
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lu Fan
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Li Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Feika Bian
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Weijian Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Shenzhen Research Institute, Southeast University, Shenzhen, 518071, China
| |
Collapse
|
4
|
Zhi C, Shi S, Wu H, Si Y, Zhang S, Lei L, Hu J. Emerging Trends of Nanofibrous Piezoelectric and Triboelectric Applications: Mechanisms, Electroactive Materials, and Designed Architectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401264. [PMID: 38545963 DOI: 10.1002/adma.202401264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/19/2024] [Indexed: 04/13/2024]
Abstract
Over the past few decades, significant progress in piezo-/triboelectric nanogenerators (PTEGs) has led to the development of cutting-edge wearable technologies. Nanofibers with good designability, controllable morphologies, large specific areas, and unique physicochemical properties provide a promising platform for PTEGs for various advanced applications. However, the further development of nanofiber-based PTEGs is limited by technical difficulties, ranging from materials design to device integration. Herein, the current developments in PTEGs based on electrospun nanofibers are systematically reviewed. This review begins with the mechanisms of PTEGs and the advantages of nanofibers and nanodevices, including high breathability, waterproofness, scalability, and thermal-moisture comfort. In terms of materials and structural design, novel electroactive nanofibers and structure assemblies based on 1D micro/nanostructures, 2D bionic structures, and 3D multilayered structures are discussed. Subsequently, nanofibrous PTEGs in applications such as energy harvesters, personalized medicine, personal protective equipment, and human-machine interactions are summarized. Nanofiber-based PTEGs still face many challenges such as energy efficiency, material durability, device stability, and device integration. Finally, the research gap between research and practical applications of PTEGs is discussed, and emerging trends are proposed, providing some ideas for the development of intelligent wearables.
Collapse
Affiliation(s)
- Chuanwei Zhi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Shuo Shi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Hanbai Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Yifan Si
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Shuai Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Leqi Lei
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
5
|
Huang Y, Li Y, Yang Y, Wu Y, Shi Q. Flexible piezoelectric sensor based on polyvinylidene fluoride/polyacrylonitrile/carboxy-terminated multi-walled carbon nanotube composite films for human motion monitoring. NANOTECHNOLOGY 2024; 35:235501. [PMID: 38422987 DOI: 10.1088/1361-6528/ad2f1d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
Flexible piezoelectric devices have attracted much attention in the fields of intelligent devices and biomedicine because of their high sensitivity, stability, and flexibility. In this paper, a multifunctional flexible pressure sensor was prepared by adding polyacrylonitrile (PAN) and carboxylic-terminated multi-walled carbon nanotubes (c-MWCNTs) with polyvinylidene difluoride (PVDF) as the substrate. Theβ-phase content of PVDF/PAN blended fibers compounded with c-MWCNT was up to 95%. At the same time, when PAN was added, the mechanical properties of the composite fibers were constantly improved. The results show that the polymer blending method can improve the comprehensive properties of PVDF composite. The flexible sensor prepared from the PVDF/PAN/c-MWCNT composite film has an output voltage of 2.1 V and a current of 7μA. The addition of c-MWCNT can largely improve the sensitivity of the sensor (4.19 V N-1). The sensor is attached to the finger and shows good output performance under different degrees of bending of the finger. The maximum output voltage of the sensor is 0.4 V, 0.56 V and 1.15 V when the finger bending angle is 30°, 60°, and 90°, respectively. Moreover, the developed piezoelectric sensor can monitor large-scale movements of various parts of the human body. Therefore, this composite material shows potential in areas such as motion monitoring and energy storage devices.
Collapse
Affiliation(s)
- Yan Huang
- Beijing Key Lab of Special Elastomeric Composite Materials, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, People's Republic of China
| | - Yi Li
- Beijing Key Lab of Special Elastomeric Composite Materials, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, People's Republic of China
| | - Yanxin Yang
- Beijing Key Lab of Special Elastomeric Composite Materials, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, People's Republic of China
| | - Yibo Wu
- Beijing Key Lab of Special Elastomeric Composite Materials, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, People's Republic of China
| | - Qisong Shi
- Beijing Key Lab of Special Elastomeric Composite Materials, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, People's Republic of China
| |
Collapse
|
6
|
Li A, Yang J, He Y, Wen J, Jiang X. Advancing piezoelectric 2D nanomaterials for applications in drug delivery systems and therapeutic approaches. NANOSCALE HORIZONS 2024; 9:365-383. [PMID: 38230559 DOI: 10.1039/d3nh00578j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Precision drug delivery and multimodal synergistic therapy are crucial in treating diverse ailments, such as cancer, tissue damage, and degenerative diseases. Electrodes that emit electric pulses have proven effective in enhancing molecule release and permeability in drug delivery systems. Moreover, the physiological electrical microenvironment plays a vital role in regulating biological functions and triggering action potentials in neural and muscular tissues. Due to their unique noncentrosymmetric structures, many 2D materials exhibit outstanding piezoelectric performance, generating positive and negative charges under mechanical forces. This ability facilitates precise drug targeting and ensures high stimulus responsiveness, thereby controlling cellular destinies. Additionally, the abundant active sites within piezoelectric 2D materials facilitate efficient catalysis through piezochemical coupling, offering multimodal synergistic therapeutic strategies. However, the full potential of piezoelectric 2D nanomaterials in drug delivery system design remains underexplored due to research gaps. In this context, the current applications of piezoelectric 2D materials in disease management are summarized in this review, and the development of drug delivery systems influenced by these materials is forecast.
Collapse
Affiliation(s)
- Anshuo Li
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China.
- State Key Laboratory of Metastable Materials Science and Technology, Nanobiotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, China
| | - Jiawei Yang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China.
| | - Yuchu He
- State Key Laboratory of Metastable Materials Science and Technology, Nanobiotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, China
| | - Jin Wen
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China.
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China.
| |
Collapse
|