1
|
Tirey TN, Singh A, Arango JC, Claridge SA. Nanoscale Surface Chemical Patterning of Soft Polyacrylamide with Elastic Modulus Similar to Soft Tissue. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:8264-8273. [PMID: 39279906 PMCID: PMC11397139 DOI: 10.1021/acs.chemmater.4c01106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024]
Abstract
Nanometer-scale control over surface functionalization of soft gels is important for a variety of applications including controlling interactions with cells for in vitro cell culture and for regenerative medicine. Recently, we have shown that it is possible to transfer a nanometer-thick precision functional polymer layer to the surface of relatively stiff polyacrylamide gels. Here, we develop a fundamental understanding of the way in which the precision polymer backbone participates in the polyacrylamide radical polymerization and cross-linking process, which enables us to generate high-efficiency transfer to much softer hydrogels (down to 5 kPa) with stiffness similar to that of soft tissue. This approach creates hydrogel surfaces with exposed nanostructured functional arrays that open the door to controlled ligand presentation on soft hydrogel surfaces.
Collapse
Affiliation(s)
- Teah N Tirey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Anamika Singh
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Juan C Arango
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shelley A Claridge
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
Nava E, Singh A, Williams LO, Arango JC, Nagubandi KA, Pintro CJ, Claridge SA. Sub-10 μm Soft Interlayers Integrating Patterned Multivalent Biomolecular Binding Environments. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44152-44163. [PMID: 39133196 PMCID: PMC11346468 DOI: 10.1021/acsami.4c05086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/23/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Designing surfaces that enable controlled presentation of multivalent ligand clusters (e.g., for rapid screening of biomolecular binding constants or design of artificial extracellular matrices) is a cross-cutting challenge in materials and interfacial chemistry. Existing approaches frequently rely on complex building blocks or scaffolds and are often specific to individual substrate chemistries. Thus, an interlayer chemistry that enabled efficient nanometer-scale patterning on a transferrable layer and subsequent integration with other classes of materials could substantially broaden the scope of surfaces available for sensors and wearable electronics. Recently, we have shown that it is possible to assemble nanometer-resolution chemical patterns on substrates including graphite, use diacetylene polymerization to lock the molecular pattern together, and then covalently transfer the pattern to amorphous materials (e.g., polydimethylsiloxane, PDMS), which would not natively enable high degrees of control over ligand presentation. Here, we develop a low-viscosity PDMS formulation that generates very thin films (<10 μm) with dense cross-linking, enabling high-efficiency surface functionalization with polydiacetylene arrays displaying carbohydrates and other functional groups (up to 10-fold greater than other soft materials we have used previously) on very thin films that can be integrated with other materials (e.g., glass and soft materials) to enable a highly controlled multivalent ligand display. We use swelling and other characterization methods to relate surface functionalization efficiency to the average distance between cross-links in the PDMS, developing design principles that can be used to create even thinner transfer layers. In the context of this work, we apply this approach using precision glycopolymers presenting structured arrays of N-acetyl glucosamine ligands for lectin binding assays. More broadly, this interlayer approach lays groundwork for designing surface layers for the presentation of ligand clusters on soft materials for applications including wearable electronics and artificial extracellular matrix.
Collapse
Affiliation(s)
- Emmanuel
K. Nava
- Department
of Chemistry, Purdue University, West Lafayette, Indiana, 47907
| | - Anamika Singh
- Department
of Chemistry, Purdue University, West Lafayette, Indiana, 47907
| | - Laura O. Williams
- Department
of Chemistry, Purdue University, West Lafayette, Indiana, 47907
| | - Juan C. Arango
- Department
of Chemistry, Purdue University, West Lafayette, Indiana, 47907
| | | | - Chris J. Pintro
- Department
of Chemistry, Purdue University, West Lafayette, Indiana, 47907
| | - Shelley A. Claridge
- Department
of Chemistry, Purdue University, West Lafayette, Indiana, 47907
- Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette, Indiana, 47907
| |
Collapse
|
3
|
Arango JC, Pintro CJ, Singh A, Claridge SA. Inkjet Printing of Nanoscale Functional Patterns on 2D Crystalline Materials and Transfer to Soft Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8055-8065. [PMID: 38300756 PMCID: PMC10875643 DOI: 10.1021/acsami.3c16687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
Nanometer-scale control over surface functionality is important in applications ranging from nanoscale electronics to regenerative medicine. However, approaches that provide precise control over surface chemistry at the nanometer scale are often challenging to use with higher throughput and in more heterogeneous environments (e.g., complex solutions, porous interfaces) common for many applications. Here, we demonstrate a scalable inkjet-based method to generate 1 nm-wide functional patterns on 2D materials such as graphite, which can then be transferred to soft materials such as hydrogels. We examine fluid dynamics associated with the inkjet printing process for low-viscosity amphiphile inks designed to maximize ordering with limited residue and show that microscale droplet fluid dynamics influence nanoscale molecular ordering. Additionally, we show that scalable patterns generated in this way can be transferred to hydrogel materials and used to create surface chemical patterns that induce adsorption of charged particles, with effects strong enough to overcome electrostatic repulsion between a charged hydrogel and a like-charged nanoparticle.
Collapse
Affiliation(s)
- Juan C. Arango
- Department
of Chemistry, Purdue University, West Lafayette 47907, Indiana
| | - Chris J. Pintro
- Department
of Chemistry, Purdue University, West Lafayette 47907, Indiana
| | - Anamika Singh
- Department
of Chemistry, Purdue University, West Lafayette 47907, Indiana
| | - Shelley A. Claridge
- Department
of Chemistry, Purdue University, West Lafayette 47907, Indiana
- Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette 47907, Indiana
| |
Collapse
|
4
|
Li M, Liu X, Shang J, Wang X, Zhang XB, Xiong B. Light-mediated protein functionalization of photoclickable hydrogel interface for selective cell capture and dot blotting assay. Talanta 2024; 267:125248. [PMID: 37769500 DOI: 10.1016/j.talanta.2023.125248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
The construction of versatile functional hydrogel interfaces holds promising prospects in biosensing and bioengineering. Herein, we introduced a light-induced protein conjugation strategy for on-demand surface modification of hydrogel interface based on the photoclick cyclization between primary amine and o-nitrobenzyl alcohol. We achieved the on-demand protein conjugation by grafting the molecular plugin, 4-(hydroxymethyl)-3-nitrobenzoic acid (HNBA), onto the hydrogel surface, followed by the mask-aided photoclick reaction with the protein of interest. This method enables the creation of protein patterns on hydrogel interface with a lower limit of pattern width at ∼70 μm. With this method, we demonstrated the surface engineering of epidermal growth factor (EGF) on hydrogel interface for selective capture of EGF receptor-positive cancer cells with an efficiency over 80%. Moreover, we applied the mask-aided photoclick conjugation method for antigen capture and developed a photoclickable hydrogel interface-based dot blotting assay. Due to the high-efficient antigen capture of photoclick conjugation, the photoclickable hydrogel interface-based dot blotting assay shows improved sensitivity for antigen detection with a limit of detection as 0.065 ng. We believed that this light-induced protein conjugation method holds the potential as a robust strategy for the construction of bioactive hydrogel interfaces for various bio-related applications.
Collapse
Affiliation(s)
- Mili Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xixuan Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jinhui Shang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xiangbin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bin Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
5
|
Williams LO, Nava EK, Shi A, Roberts TJ, Davis CS, Claridge SA. Designing Interfacial Reactions for Nanometer-Scale Surface Patterning of PDMS with Controlled Elastic Modulus. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11360-11368. [PMID: 36787222 DOI: 10.1021/acsami.2c22646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Control over the surface chemistry of elastomers such as polydimethylsiloxane (PDMS) is important for many applications. However, achieving nanostructured chemical control on amorphous material interfaces below the length scale of substrate heterogeneity is not straightforward, and can be particularly difficult to decouple from changes in network structure that are required for certain applications (e.g., variation of elastic modulus for cell culture). We have recently reported a new method for precisely structured surface functionalization of PDMS and other soft materials, which displays high densities of ligands directly on the material surface, maximizing steric accessibility. Here, we systematically examine structural factors in the PDMS components (e.g., base and cross-linker structures) that impact efficiency of the interfacial reaction that leads to surface functionalization. Applying this understanding, we demonstrate routes for generating equivalent nanometer-scale functional patterns on PDMS with elastic moduli from 0.013 to 1.4 MPa, establishing a foundation for use in applications such as cell culture.
Collapse
Affiliation(s)
- Laura O Williams
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Emmanuel K Nava
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Anni Shi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tyler J Roberts
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chelsea S Davis
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shelley A Claridge
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
Singh A, Arango JC, Shi A, d’Aliberti JB, Claridge SA. Surface-Templated Glycopolymer Nanopatterns Transferred to Hydrogels for Designed Multivalent Carbohydrate-Lectin Interactions across Length Scales. J Am Chem Soc 2023; 145:1668-1677. [PMID: 36640106 PMCID: PMC9881003 DOI: 10.1021/jacs.2c09937] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Multivalent interactions between carbohydrates and proteins enable a broad range of selective chemical processes of critical biological importance. Such interactions can extend from the macromolecular scale (1-10 nm) up to much larger scales across a cell or tissue, placing substantial demands on chemically patterned materials aiming to leverage similar interactions in vitro. Here, we show that diyne amphiphiles with carbohydrate headgroups can be assembled on highly oriented pyrolytic graphite (HOPG) to generate nanometer-resolution carbohydrate patterns, with individual linear carbohydrate assemblies up to nearly 1 μm, and microscale geometric patterns. These are then photopolymerized and covalently transferred to the surfaces of hydrogels. This strategy suspends carbohydrate patterns on a relatively rigid polydiacetylene (persistence length ∼ 16 nm), exposed at the top surface of the hydrogel above the bulk pore structure. Transferred patterns of appropriate carbohydrates (e.g., N-acetyl-d-glucosamine, GlcNAc) enable selective, multivalent interactions (KD ∼ 40 nM) with wheat germ agglutinin (WGA), a model lectin that exhibits multivalent binding with appropriately spaced GlcNAc moieties. WGA binding affinity can be further improved (KD ∼ 10 nM) using diacetylenes that shift the polymer backbone closer to the displayed carbohydrate, suggesting that this strategy can be used to modulate carbohydrate presentation at interfaces. Conversely, GlcNAc-patterned surfaces do not induce specific binding of concanavalin A, and surfaces patterned with glucuronic acid, or with simple carboxylic acid or hydroxyl groups, do not induce WGA binding. More broadly, this approach may have utility in designing synthetic glycan-mimetic interfaces with features from molecular to mesoscopic scales, including soft scaffolds for cells.
Collapse
Affiliation(s)
- Anamika Singh
- Department
of Chemistry, Purdue University, West Lafayette, Indiana47907, United States
| | - Juan C. Arango
- Department
of Chemistry, Purdue University, West Lafayette, Indiana47907, United States
| | - Anni Shi
- Department
of Chemistry, Purdue University, West Lafayette, Indiana47907, United States
| | - Joseph B. d’Aliberti
- Department
of Chemistry, Purdue University, West Lafayette, Indiana47907, United States
| | - Shelley A. Claridge
- Department
of Chemistry, Purdue University, West Lafayette, Indiana47907, United States,Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette, Indiana47907, United States,. Phone: 765-494-6070
| |
Collapse
|
7
|
Physicochemical Modifications on Thin Films of Poly(Ethylene Terephthalate) and Its Nanocomposite with Expanded Graphite Nanostructured by Ultraviolet and Infrared Femtosecond Laser Irradiation. Polymers (Basel) 2022; 14:polym14235243. [PMID: 36501637 PMCID: PMC9737047 DOI: 10.3390/polym14235243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
In this work, the formation of laser-induced periodic surface structures (LIPSS) on the surfaces of thin films of poly(ethylene terephthalate) (PET) and PET reinforced with expanded graphite (EG) was studied. Laser irradiation was carried out by ultraviolet (265 nm) and near-infrared (795 nm) femtosecond laser pulses, and LIPSS were formed in both materials. In all cases, LIPSS had a period close to the irradiation wavelength and were formed parallel to the polarization of the laser beam, although, in the case of UV irradiation, differences in the formation range were observed due to the different thermal properties of the neat polymer in comparison to the composite. To monitor the modification of the physicochemical properties of the surfaces after irradiation as a function of the laser wavelength and of the presence of the filler, different techniques were used. Contact angle measurements were carried out using different reference liquids to measure the wettability and the solid surface free energies. The initially hydrophilic surfaces became more hydrophilic after ultraviolet irradiation, while they evolved to become hydrophobic under near-infrared laser irradiation. The values of the surface free energy components showed changes after nanostructuring, mainly in the polar component. Additionally, for UV-irradiated surfaces, adhesion, determined by the colloidal probe technique, increased, while, for NIR irradiation, adhesion decreased. Finally, nanomechanical properties were measured by the PeakForce Quantitative Nanomechanical Mapping method, obtaining maps of elastic modulus, adhesion, and deformation. The results showed an increase in the elastic modulus in the PET/EG, confirming the reinforcing action of the EG in the polymer matrix. Additionally, an increase in the elastic modulus was observed after LIPSS formation.
Collapse
|
8
|
Singh A, Shi A, Claridge SA. Nanometer-scale patterning of hard and soft interfaces: from photolithography to molecular-scale design. Chem Commun (Camb) 2022; 58:13059-13070. [DOI: 10.1039/d2cc05221k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Many areas of modern materials chemistry, from nanoscale electronics to regenerative medicine, require design of precisely-controlled chemical environments at near-molecular scales on both hard and soft surfaces.
Collapse
Affiliation(s)
- Anamika Singh
- Purdue University, Chemistry, West Lafayette, Indiana, USA
| | - Anni Shi
- Purdue University, Chemistry, West Lafayette, Indiana, USA
| | - Shelley A. Claridge
- Purdue University, Chemistry and Biomedical Engineering, 560 Oval Drive, West Lafayette, Indiana, USA
| |
Collapse
|