1
|
Sun ML, Wang HY, Feng Y, Ren JT, Wang L, Yuan ZY. Electrodegradation of nitrogenous pollutants in sewage: from reaction fundamentals to energy valorization applications. Chem Soc Rev 2024; 53:11908-11966. [PMID: 39498737 DOI: 10.1039/d4cs00517a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The excessive accumulation of nitrogen pollutants (mainly nitrate, nitrite, ammonia nitrogen, hydrazine, and urea) in water bodies seriously disrupts the natural nitrogen cycle and poses a significant threat to human life and health. Electrolysis is considered a promising method to degrade these nitrogenous pollutants in sewage, with the advantages of high efficiency, wide generality, easy operability, retrievability, and environmental friendliness. For particular energy devices, including metal-nitrate batteries, direct fuel cells, and hybrid water electrolyzers, the realization of energy valorization from sewage purification processes (e.g., valuable chemical generation, electricity output, and hydrogen production) becomes feasible. Despite the progress in the research on pollutant electrodegradation, the development of electrocatalysts with high activity, stability, and selectivity for pollutant removal, coupled with corresponding energy devices, remains a challenge. This review comprehensively provides advanced insights into the electrodegradation processes of nitrogenous pollutants and relevant energy valorization strategies, focusing on the reaction mechanisms, activity descriptors, electrocatalyst design, and actuated electrodes and operation parameters of tailored energy conversion devices. A feasibility analysis of electrodegradation on real wastewater samples from the perspective of pollutant concentration, pollutant accumulation, and electrolyte effects is provided. Challenges and prospects for the future development of electrodegradation systems are also discussed in detail to bridge the gap between experimental trials and commercial applications.
Collapse
Affiliation(s)
- Ming-Lei Sun
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Hao-Yu Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Yi Feng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Jin-Tao Ren
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Lei Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Zhong-Yong Yuan
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| |
Collapse
|
2
|
Jiang M, Zhu M, Ding J, Wang H, Yu Q, Chen X, He Y, Wang M, Luo X, Wu C, Zhang L, Yao X, Wang H, Li X, Liao X, Jiang Z, Jin Z. Nanocluster-agminated amorphous cobalt nanofilms for highly selective electroreduction of nitrate to ammonia. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134909. [PMID: 38905979 DOI: 10.1016/j.jhazmat.2024.134909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/16/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
Developing highly-efficient electrocatalysts for the nitrate reduction reaction (NITRR) is a persistent challenge. Here, we present the successful synthesis of 14 amorphous/low crystallinity metal nanofilms on three-dimensional carbon fibers (M-NFs/CP), including Al, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, In, Sn, Pb, Au, or Bi, using rapid thermal evaporation. Among these samples, our study identifies the amorphous Co nanofilm with fine agglomerated Co clusters as the optimal electrocatalyst for NITRR in a neutral medium. The resulting Co-NFs/CP exhibits a remarkable Faradaic efficiency (FENH3) of 91.15 % at - 0.9 V vs RHE, surpassing commercial Co foil (39 %) and Co powder (20 %), despite sharing the same metal composition. Furthermore, during the electrochemical NITRR, the key intermediates on the surface of the Co-NFs/CP catalyst were detected by in situ Fourier-transform infrared (FTIR) spectroscopy, and the possible reaction ways were probed by Density functional theory (DFT) calculations. Theoretical calculations illustrate that the abundant low-coordinate Co atoms of Co-NFs/CP could enhances the adsorption of *NO3 intermediates compared to crystalline Co. Additionally, the amorphous Co structure lowers the energy barrier for the rate-determining step (*NH2→*NH3). This work opens a new avenue for the controllable synthesis of amorphous/low crystallinity metal nano-catalysts for various electrocatalysis reaction applications.
Collapse
Affiliation(s)
- Minghang Jiang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China; State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Research Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Mengfei Zhu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Research Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Junjie Ding
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China
| | - Huaizhu Wang
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Research Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Qianchuan Yu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Research Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xi Chen
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Yi He
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Mengjun Wang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Xiaojun Luo
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Caijun Wu
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Liyun Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Xinghui Yao
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Huizhen Wang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Xiao Li
- College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi 537000, China.
| | - Xuemei Liao
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China; School of Food and Biological Engineering, Xihua University, Chengdu, Sichuan 610039, China.
| | - Zhenju Jiang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China; School of Food and Biological Engineering, Xihua University, Chengdu, Sichuan 610039, China.
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Research Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
3
|
Wei Y, Huang J, Chen H, Zheng SJ, Huang RW, Dong XY, Li LK, Cao A, Cai J, Zang SQ. Electrocatalytic Nitrate Reduction on Metallic CoNi-Terminated Catalyst with Industrial-Level Current Density in Neutral Medium. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404774. [PMID: 38721927 DOI: 10.1002/adma.202404774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/25/2024] [Indexed: 05/18/2024]
Abstract
Green ammonia synthesis through electrocatalytic nitrate reduction reaction (eNO3RR) can serve as an effective alternative to the traditional energy-intensive Haber-Bosch process. However, achieving high Faradaic efficiency (FE) at industrially relevant current density in neutral medium poses significant challenges in eNO3RR. Herein, with the guidance of theoretical calculation, a metallic CoNi-terminated catalyst is successfully designed and constructed on copper foam, which achieves an ammonia FE of up to 100% under industrial-level current density and very low overpotential (-0.15 V versus reversible hydrogen electrode) in a neutral medium. Multiple characterization results have confirmed that the maintained metal atom-terminated surface through interaction with copper atoms plays a crucial role in reducing overpotential and achieving high current density. By constructing a homemade gas stripping and absorption device, the complete conversion process for high-purity ammonium nitrate products is demonstrated, displaying the potential for practical application. This work suggests a sustainable and promising process toward directly converting nitrate-containing pollutant solutions into practical nitrogen fertilizers.
Collapse
Affiliation(s)
- Yingying Wei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingjing Huang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Hong Chen
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Su-Jun Zheng
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Ren-Wu Huang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xi-Yan Dong
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Lin-Ke Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Ang Cao
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jinmeng Cai
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuang-Quan Zang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
4
|
Qi S, Lei Z, Huo Q, Zhao J, Huang T, Meng N, Liao J, Yi J, Shang C, Zhang X, Yang H, Hu Q, He C. Ultrathin High-Entropy Fe-Based Spinel Oxide Nanosheets with Metalloid Band Structures for Efficient Nitrate Reduction toward Ammonia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403958. [PMID: 38641326 DOI: 10.1002/adma.202403958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Spinel oxides with tunable chemical compositions have emerged as versatile electrocatalysts, however their performance is greatly limited by small surface area and low electron conductivity. Here, ultrathin high-entropy Fe-based spinel oxides nanosheets are rationally designed (i.e., (Co0.2Ni0.2Zn0.2Mg0.2Cu0.2)Fe2O4; denotes A5Fe2O4) in thickness of ≈4.3 nm with large surface area and highly exposed active sites via a modified sol-gel method. Theoretic and experimental results confirm that the bandgap of A5Fe2O4 nanosheets is significantly smaller than that of ordinary Fe-based spinel oxides, realizing the transformation of binary spinel oxide from semiconductors to metalloids. As a result, such A5Fe2O4 nanosheets manifest excellent performance for the nitrate reduction reaction (NO3 -RR) to ammonia (NH3), with a NH3 yield rate of ≈2.1 mmol h-1 cm-2 at -0.5 V versus Reversible hydrogen electrode, outperforming other spinel-based electrocatalysts. Systematic mechanism investigations reveal that the NO3 -RR is mainly occurred on Fe sites, and introducing high-entropy compositions in tetrahedral sites regulates the adsorption strength of N and O-related intermediates on Fe for boosting the NO3 -RR. The above findings offer a high-entropy platform to regulate the bandgap and enhance the electrocatalytic performance of spinel oxides.
Collapse
Affiliation(s)
- Shuai Qi
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Zhihao Lei
- Global Innovative Center of Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Qihua Huo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Jinwen Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Tianchi Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Na Meng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Jinlian Liao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Jiabao Yi
- Global Innovative Center of Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Chunyan Shang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Xue Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Hengpan Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Qi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| |
Collapse
|
5
|
Zhang Y, Xiong J, Liu B, Yan S. Regulation of the Fe/Ni ratio on the morphology of Fe xNi yO 4 and the performance of nitrate reduction in ammonia synthesis. J Colloid Interface Sci 2024; 662:39-47. [PMID: 38335738 DOI: 10.1016/j.jcis.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
The combination of theoretical calculations and experimental synthesis provides valuable insights into the performance of FexNiyO4 as a catalyst for ammonia (NH3) synthesis through the electrocatalytic nitrate reduction reaction (eNO3-RR). Here, an observation of a volcano-shaped trend in the theoretical calculations reveals that the catalytic activity of FexNiyO4 for NH3 synthesis varies with the Fe/Ni ratio. The subsequent experimental syntheses of FexNiyO4 with different Fe/Ni ratios validate this trend and demonstrate the morphological changes associated with the varying Fe/Ni ratios. The evolution of the FexNiyO4 morphology from nanosheets to sea urchin-like structures, nanowires and nanoflowers composed of rotated nanosheets as the Fe/Ni ratio increases further supports the influence of the composition on the resulting morphology. This morphological diversity can be attributed to the specific growth conditions and self-assembly processes involved in the synthesis. The correlation between the Fe/Ni ratio, morphology and NH3 yield reinforces the theoretical calculations. The observed volcanic trend in the NH3 yield, consistent with the theoretical predictions, indicates that there is an optimal Fe/Ni ratio (Fe2NiO4) with the highest NH3 yield of 12.51 mg h-1 cm-2 at -1.1 V. The excellent Faradaic efficiency of 95.97 % in neutral solution further highlights the suitability of Fe2NiO4 as a catalyst for NH3 synthesis through eNO3-RR. Moreover, the remarkable stability of FexNiyO4, regardless of the Fe/Ni ratio, is an important finding. The consistent performance of FexNiyO4 indicates its potential for long-term and practical applications in NH3 synthesis. Furthermore, the observed morphological changes, volcano-shaped trend in the NH3 yield and remarkable stability of FexNiyO4 highlight its potential as a promising catalyst.
Collapse
Affiliation(s)
- Yanli Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiuqing Xiong
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Bingping Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Shihai Yan
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
6
|
Zhou L, Chen X, Zhu S, You K, Wang ZJ, Fan R, Li J, Yuan Y, Wang X, Wang J, Chen Y, Jin H, Wang S, Lv JJ. Two-dimensional Cu Plates with Steady Fluid Fields for High-rate Nitrate Electroreduction to Ammonia and Efficient Zn-Nitrate Batteries. Angew Chem Int Ed Engl 2024; 63:e202401924. [PMID: 38366134 DOI: 10.1002/anie.202401924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/18/2024]
Abstract
Nitrate electroreduction reaction (eNO3 -RR) to ammonia (NH3) provides a promising strategy for nitrogen utilization, while achieving high selectivity and durability at an industrial scale has remained challenging. Herein, we demonstrated that the performance of eNO3 -RR could be significantly boosted by introducing two-dimensional Cu plates as electrocatalysts and eliminating the general carrier gas to construct a steady fluid field. The developed eNO3 -RR setup provided superior NH3 Faradaic efficiency (FE) of 99 %, exceptional long-term electrolysis for 120 h at 200 mA cm-2, and a record-high yield rate of 3.14 mmol cm-2 h-1. Furthermore, the proposed strategy was successfully extended to the Zn-nitrate battery system, providing a power density of 12.09 mW cm-2 and NH3 FE of 85.4 %, outperforming the state-of-the-art eNO3 -RR catalysts. Coupled with the COMSOL multiphysics simulations and in situ infrared spectroscopy, the main contributor for the high-efficiency NH3 production could be the steady fluid field to timely rejuvenate the electrocatalyst surface during the electrocatalysis.
Collapse
Affiliation(s)
- Limin Zhou
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
| | - Xueqiu Chen
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
| | - Shaojun Zhu
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
| | - Kun You
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
| | - Zheng-Jun Wang
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
| | - Ru Fan
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
| | - Jun Li
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou, Zhejiang, 325035, China
| | - Yifei Yuan
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
| | - Xin Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Jichang Wang
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, M4Y1M7, Canada
| | - Yihuang Chen
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
| | - Huile Jin
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou, Zhejiang, 325035, China
| | - Shun Wang
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou, Zhejiang, 325035, China
| | - Jing-Jing Lv
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
7
|
Lu X, Leng Y, Su L, Zhang B, Zhao J, Ren X, Wei Q. Phosphorus-rich CoP 4@N-C nanoarrays for efficient nitrate-to-ammonia electroreduction. NANOSCALE 2024. [PMID: 38644784 DOI: 10.1039/d4nr00884g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The electrochemical nitrate reduction reaction (NO3-RR) is a novel green method for ammonia synthesis. However, the lack of sufficient catalysts has hindered the development of the NO3-RR. This research develops a transformation of porous CoP@N-C/CC into porous phosphorus-rich CoP4@N-C/CC through high-temperature calcination. Due to its unique phosphating-rich structure, CoP4@N-C/CC exhibits an excellent Faraday efficiency (FE: 92.3%) and NH3 yield (610.2 μmol h-1 cm-2). Such a catalyst with more P-P bonds can provide more active sites, effectively enhancing the adsorption and reaction processes of reactant molecules. In addition, the catalyst has good durability and catalytic stability, which provides a possibility for the future application of electrocatalytic ammonia production.
Collapse
Affiliation(s)
- Xinyu Lu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Yanqiu Leng
- Zhaoyuan Branch of Yantai Municipal Ecology and Environment Bureau, Yantai, 265400, P. R. China
| | - Lei Su
- Shandong Huankeyuan Environmental Testing Co. Ltd, Jinann, 250013, P. R. China
| | - Baojian Zhang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Jinxiu Zhao
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Xiang Ren
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
8
|
Hu Q, Qi S, Huo Q, Zhao Y, Sun J, Chen X, Lv M, Zhou W, Feng C, Chai X, Yang H, He C. Designing Efficient Nitrate Reduction Electrocatalysts by Identifying and Optimizing Active Sites of Co-Based Spinels. J Am Chem Soc 2024; 146:2967-2976. [PMID: 38155548 DOI: 10.1021/jacs.3c06904] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Cobalt-based spinel oxides (i.e., Co3O4) are emerging as low-cost and selective electrocatalysts for the electrochemical nitrate reduction reaction (NO3-RR) to ammonia (NH3), although their activity is still unsatisfactory and the genuine active site is unclear. Here, we discover that the NO3-RR activity of Co3O4 is highly dependent on the geometric location of the Co site, and the NO3-RR prefers to occur at octahedral Co (CoOh) rather than tetrahedral Co (CoTd) sites. Moreover, CoOhO6 is electrochemically transformed to CoOhO5 along with the formation of O vacancies (Ov) during the process of NO3-RR. Both experimental and theoretic results reveal that in situ generated CoOhO5-Ov configuration is the genuine active site for the NO3-RR. To further enhance the activity of CoOh sites, we replace inert CoTd with different contents of Cu2+ cations, and a volcano-shape correlation between NO3-RR activity and electronic structures of CoOh is observed. Impressively, in 1.0 M KOH, (Cu0.6Co0.4)Co2O4 with optimized CoOh sites achieves a maximum NH3 Faradaic efficiency of 96.5% with an ultrahigh NH3 rate of 1.09 mmol h-1 cm-2 at -0.45 V vs reversible hydrogen electrode, outperforming most of other reported nonprecious metal-based electrocatalysts. Clearly, this work paves new pathways for boosting the NO3-RR activity of Co-based spinels by tuning local electronic structures of CoOh sites.
Collapse
Affiliation(s)
- Qi Hu
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Shuai Qi
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Qihua Huo
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Yuxin Zhao
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Jianju Sun
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Xinbao Chen
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Miaoyuan Lv
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Weiliang Zhou
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Chao Feng
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Xiaoyan Chai
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Hengpan Yang
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Chuanxin He
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| |
Collapse
|
9
|
Islam J, Shareef M, Anwar R, Akter S, Ullah MH, Osman H, Rahman IM, Khandaker MU, Chowdhury FI. A brief insight on electrochemical energy storage toward the production of value-added chemicals and electricity generation. JOURNAL OF ENERGY STORAGE 2024; 77:109944. [DOI: 10.1016/j.est.2023.109944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
|
10
|
Zhang W, Zhan S, Xiao J, Petit T, Schlesiger C, Mellin M, Hofmann JP, Heil T, Müller R, Leopold K, Oschatz M. Coordinative Stabilization of Single Bismuth Sites in a Carbon-Nitrogen Matrix to Generate Atom-Efficient Catalysts for Electrochemical Nitrate Reduction to Ammonia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302623. [PMID: 37544912 PMCID: PMC10558634 DOI: 10.1002/advs.202302623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Indexed: 08/08/2023]
Abstract
Electrochemical nitrate reduction to ammonia powered by renewable electricity is not only a promising alternative to the established energy-intense and non-ecofriendly Haber-Bosch reaction for ammonia generation but also a future contributor to the ever-more important denitrification schemes. Nevertheless, this reaction is still impeded by the lack of understanding for the underlying reaction mechanism on the molecular scale which is necessary for the rational design of active, selective, and stable electrocatalysts. Herein, a novel single-site bismuth catalyst (Bi-N-C) for nitrate electroreduction is reported to produce ammonia with maximum Faradaic efficiency of 88.7% and at a high rate of 1.38 mg h-1 mgcat -1 at -0.35 V versus reversible hydrogen electrode (RHE). The active center (described as BiN2 C2 ) is uncovered by detailed structural analysis. Coupled density functional theory calculations are applied to analyze the reaction mechanism and potential rate-limiting steps for nitrate reduction based on the BiN2 C2 model. The findings highlight the importance of model catalysts to utilize the potential of nitrate reduction as a new-generation nitrogen-management technology based on the construction of efficient active sites.
Collapse
Affiliation(s)
- Wuyong Zhang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang ProvinceQianwan Institute of CNITECHNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboZhejiang315201P. R. China
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Institute for Technical Chemistry and Environmental ChemistryFriedrich‐Schiller‐University JenaPhilosophenweg 7a07743JenaGermany
| | - Shaoqi Zhan
- Department of Chemistry‐BMCUppsala UniversityBMC Box 576UppsalaS‐751 23Sweden
- Department of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3QZUK
| | - Jie Xiao
- Helmholtz‐Zentrum Berlin für Materialien und Energie GmbHAlbert‐Einstein‐Straße 1512489BerlinGermany
| | - Tristan Petit
- Helmholtz‐Zentrum Berlin für Materialien und Energie GmbHAlbert‐Einstein‐Straße 1512489BerlinGermany
| | - Christopher Schlesiger
- Institute for Optics and Atomic PhysicsTechnische Universität BerlinHardenbergstr. 3610623BerlinGermany
| | - Maximilian Mellin
- Surface Science LaboratoryDepartment of Materials and Earth SciencesTechnical University of DarmstadtOtto‐Berndt‐Straße 364287DarmstadtGermany
| | - Jan P. Hofmann
- Surface Science LaboratoryDepartment of Materials and Earth SciencesTechnical University of DarmstadtOtto‐Berndt‐Straße 364287DarmstadtGermany
| | - Tobias Heil
- Max Planck Institute of Colloids and InterfacesDepartment of Colloid ChemistryAm Mühlenberg 114476PotsdamGermany
| | - Riccarda Müller
- Institute of Analytical and Bioanalytical ChemistryUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| | - Kerstin Leopold
- Institute of Analytical and Bioanalytical ChemistryUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| | - Martin Oschatz
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Institute for Technical Chemistry and Environmental ChemistryFriedrich‐Schiller‐University JenaPhilosophenweg 7a07743JenaGermany
| |
Collapse
|
11
|
Xie L, Liu Q, He X, Luo Y, Zheng D, Sun S, Farouk A, Hamdy MS, Liu J, Kong Q, Sun X. A brush-like Cu 2O-CoO core-shell nanoarray: an efficient bifunctional electrocatalyst for overall seawater splitting. Chem Commun (Camb) 2023; 59:10303-10306. [PMID: 37548248 DOI: 10.1039/d3cc02359a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Herein, a brush-like Cu2O-CoO core-shell nanoarray on copper foam (Cu2O-CoO/CF) can achieve efficient oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) performance in alkaline seawater electrolyte. This Cu2O-CoO/CF shows overpotentials as low as 315 and 295 mV at 100 mA cm-2 for the OER and HER, respectively. Moreover, it could also be operated at 1.82 V with 100 mA cm-2 in a two-electrode electrolyzer and exhibits strong stability for at least 50 hours of electrolysis. The excellent performance and hierarchical structure advantages of Cu2O-CoO/CF provide new ideas for designing efficient seawater splitting electrocatalysts.
Collapse
Affiliation(s)
- Lisi Xie
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Xun He
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Yongsong Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Dongdong Zheng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Asmaa Farouk
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Mohamed S Hamdy
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Jun Liu
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Qingquan Kong
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| |
Collapse
|
12
|
Wang G, Chen Q, Zhang J, An X, Liu Q, Xie L, Yao W, Sun X, Kong Q. NiMoO 4 nanorods with oxygen vacancies self-supported on Ni foam towards high-efficiency electrocatalytic conversion of nitrite to ammonia. J Colloid Interface Sci 2023; 647:73-80. [PMID: 37245271 DOI: 10.1016/j.jcis.2023.05.110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/30/2023]
Abstract
As an eco-friendly and sustainable strategy, the electrochemical reduction of nitrite (NO2-) can simultaneous generation of NH3 and treatment of NO2- contamination in the environment. Herein, monoclinic NiMoO4 nanorods with abundant oxygen vacancies self-supported on Ni foam (NiMoO4/NF) are considered high-performance electrocatalysts for ambient NH3 synthesis by reduction of NO2-, which can deliver an outstanding yield of 18089.39 ± 227.98 μg h-1 cm-2 and a preferable FE of 94.49 ± 0.42% at -0.8 V. Additionally, its performance remains relatively stable during long-term operation as well as cycling tests. Furthermore, density functional theory calculations unveil the vital role of oxygen vacancies in promoting nitrite adsorption and activation, ensuring efficient NO2-RR towards NH3. A Zn-NO2- battery with NiMoO4/NF as the cathode shows high battery performance as well.
Collapse
Affiliation(s)
- Guoguo Wang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Qiuyue Chen
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jing Zhang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xuguang An
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Qian Liu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Lisi Xie
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Weitang Yao
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xunping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China.
| | - Qingquan Kong
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China.
| |
Collapse
|