1
|
Njenga PK, Masese FK, Ndaya DM, Morales-Acosta MD, Eddy N, Kasi RM. Soft and tough cellulose nanocrystals interlocked with polyacrylate-bearing cyanobiphenyl ionogels through a double network strategy. SOFT MATTER 2025; 21:1699-1709. [PMID: 39906952 DOI: 10.1039/d4sm01409j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
There are several examples of double network gels prepared from cellulose nanocrystals (CNC) conjugated with water-soluble polymers. However, soft but tough gels composed of mostly CNCs have been challenging to design due to aggregation or precipitation of CNCs at higher concentrations in solvated and gelled systems. We report a general strategy to introduce covalent and non-covalent interactions within cellulose nanocrystals (CNCs) to develop tough, processable, liquid crystalline (LC) gels. A liquid crystalline 12-methylene spacer cyanobiphenyl (CB12OH), is grafted onto acrylic acid via Steglich esterification and subsequently copolymerized with acrylic acid via free radical polymerization to afford an amphiphilic liquid crystalline polymer (LCP), PAACB12-r-PAA. The free carboxyl (COOH) groups from polyacrylic acid (PAA) in the copolymer are randomly interlocked with the hydroxyl (OH) groups of CNC through covalent crosslinking and host-guest supramolecular hydrogen bonding in DMSO and 1-butyl-3-methylimidazolium acetate ionic liquid. The dominant cyanobiphenyl-cyanobiphenyl (CB12-CB12) interactions yield hierarchically structured, tough, free-standing liquid crystalline nanocomposite ionogels. Rheological studies of the interlocked free-standing ionogels display a typical crosslinked gel behavior with the storage moduli (G') ranging 103-104 Pa across the entire angular frequency range. Mechanical properties are tailored by varying the concentration of CNCs in the nanocomposite gel. This facile design provides a general strategy to prepare soft and tough liquid crystalline gels from renewable resources.
Collapse
Affiliation(s)
- Patrick K Njenga
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
| | - Francis K Masese
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
| | - Dennis M Ndaya
- Institute of Materials Science, University of Connecticut, CT 06269, USA
| | | | - Nicholas Eddy
- Institute of Materials Science, University of Connecticut, CT 06269, USA
| | - Rajeswari M Kasi
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
- Institute of Materials Science, University of Connecticut, CT 06269, USA
| |
Collapse
|
2
|
Li X, Qiu X, Yang X, Zhou P, Guo Q, Zhang X. Multi-Modal Melt-Processing of Birefringent Cellulosic Materials for Eco-Friendly Anti-Counterfeiting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407170. [PMID: 38978419 DOI: 10.1002/adma.202407170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Ubiquitous anti-counterfeiting materials with a rapidly rising annual consumption (over 1010 m2) can pose a serious environmental burden. Biobased cellulosic materials with birefringence offer attractive sustainable alternatives, but their scalable solvent-free processing remain challenging. Here, a dynamic chemical modification strategy is proposed for multi-modal melt-processing of birefringent cellulosic materials for eco-friendly anti-counterfeiting. Relying on the thermal-activated dynamic covalent-locking of the spatial topological structure of preferred oriented cellulose, the strategy balances the contradiction between the strong confinement of long-range ordered structures and the molecular motility required for entropically-driven reconstruction. Equipped with customizable processing forms including mold-pressing, spinning, direct-ink-writing, and blade-coating, the materials exhibit a wide color gamut, self-healing efficiency (94.5%), recyclability, and biodegradability. Moreover, the diversified flexible elements facilitate scalable fabrication and compatibility with universal processing techniques, thereby enabling versatile and programmable anti-counterfeiting. The strategy is expected to provide references for multi-modal melt-processing of cellulose and promote sustainable innovation in the anti-counterfeiting industry.
Collapse
Affiliation(s)
- Xinkai Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xiaoyan Qiu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xin Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Peng Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Quanquan Guo
- Max Planck Institute of Microstructure Physics, 06120, Halle (Saale), Germany
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
3
|
Park SM, Yoon DK. Evaporation-induced self-assembly of liquid crystal biopolymers. MATERIALS HORIZONS 2024; 11:1843-1866. [PMID: 38375871 DOI: 10.1039/d3mh01585h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Evaporation-induced self-assembly (EISA) is a process that has gained significant attention in recent years due to its fundamental science and potential applications in materials science and nanotechnology. This technique involves controlled drying of a solution or dispersion of materials, forming structures with specific shapes and sizes. In particular, liquid crystal (LC) biopolymers have emerged as promising candidates for EISA due to their highly ordered structures and biocompatible properties after deposition. This review provides an overview of recent progress in the EISA of LC biopolymers, including DNA, nanocellulose, viruses, and other biopolymers. The underlying self-assembly mechanisms, the effects of different processing conditions, and the potential applications of the resulting structures are discussed.
Collapse
Affiliation(s)
- Soon Mo Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Dong Ki Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
4
|
Xu Y, Tan C, He Y, Luo B, Liu M. Chitin nanocrystals stabilized liquid metal for highly stretchable and anti-freeze hydrogels as flexible strain sensor. Carbohydr Polym 2024; 328:121728. [PMID: 38220327 DOI: 10.1016/j.carbpol.2023.121728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
Conductive hydrogels show extensive applications in flexible electronics and biomedical areas, but it is a challenge to simultaneously achieve high mechanical properties, satisfied electrical conductivity, good biocompatibility, self-recovery and anti-freezing properties through a simple preparation method. Herein, chitin nanocrystals (ChNCs) were employed to encapsulate liquid metal nanoparticles (LMNPs) to ensure the dispersion stability of LMNPs in a hydrogel system composed of polyacrylamide (PAM) and polyvinyl alcohol (PVA). The synergistic effect of ChNCs-stabilized LMNPs imparts remarkable conductivity to the hydrogel, making it an effective strain sensor for human motion. With 1 % LMNPs, the composite hydrogel stretches up to 2100 %, showing excellent stretchability. Under 10 cycles of 200 % strain, hysteresis loop curves overlap, indicating outstanding fatigue resistance. The hydrogel exhibits remarkable self-recovery, enduring 1400 % deformation without rupture. In addition, its effective antifreeze properties result from immersion in a glycerol-water solvent. Even at -20 °C and 60 °C, the hydrogel maintains stable, reproducible resistance changes at 150 % tensile strain. Therefore, the high-performance conductive hydrogel containing ChNCs stabilized LM has promising applications in flexible wearable sensing devices.
Collapse
Affiliation(s)
- Yuqian Xu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Cuiying Tan
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Yunqing He
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Binghong Luo
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Mingxian Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China; Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
5
|
Pyeon J, Park SM, Kim J, Kim JH, Yoon YJ, Yoon DK, Kim H. Plasmonic metasurfaces of cellulose nanocrystal matrices with quadrants of aligned gold nanorods for photothermal anti-icing. Nat Commun 2023; 14:8096. [PMID: 38065944 PMCID: PMC10709361 DOI: 10.1038/s41467-023-43511-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 11/11/2023] [Indexed: 08/17/2024] Open
Abstract
Cellulose nanocrystals (CNCs) are intriguing as a matrix for plasmonic metasurfaces made of gold nanorods (GNRs) because of their distinctive properties, including renewability, biodegradability, non-toxicity, and low cost. Nevertheless, it is very difficult to precisely regulate the positioning and orientation of CNCs on the substrate in a consistent pattern. In this study, CNCs and GNRs, which exhibit tunable optical and anti-icing capabilities, are employed to manufacture a uniform plasmonic metasurface using a drop-casting technique. Two physical phenomena-(i) spontaneous and rapid self-dewetting and (ii) evaporation-induced self-assembly-are used to accomplish this. Additionally, we improve the CNC-GNR ink composition and determine the crucial coating parameters necessary to balance the two physical mechanisms in order to produce thin films without coffee rings. The final homogeneous CNC-GNR film has consistent annular ring patterns with plasmonic quadrant hues that are properly aligned, which enhances plasmonic photothermal effects. The CNC-GNR multi-array platform offers above-zero temperatures on a substrate that is subcooled below the freezing point. The current study presents a physicochemical approach for functional nanomaterial-based CNC control.
Collapse
Affiliation(s)
- Jeongsu Pyeon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Soon Mo Park
- Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Juri Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jeong-Hwan Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yong-Jin Yoon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Dong Ki Yoon
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| | - Hyoungsoo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|