1
|
Pushpendra, Naidu BS. Luminescent nanomaterials based covert tags for anti-counterfeiting applications: A review. Adv Colloid Interface Sci 2025; 341:103480. [PMID: 40157334 DOI: 10.1016/j.cis.2025.103480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/12/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
Counterfeiting has emerged as a new global threat that challenges companies, securities, governments, and customers. Because of the banal advancements in technology, it is extremely prevalent. Ultimately have a more concerning effect than terrorism in terms of the standard of goods, organizations, banks' financial standing, people's health, the nation's financial situation, etc. Thus, it requires an urgent high-tech solution to combat counterfeiting. The present review surveys the anti-counterfeiting technologies that have been applied to combat and discourage counterfeiting. It presents the photoluminescence properties of quantum dots, metal-organic-framework, and lanthanide-doped nanomaterials and their applications in anti-counterfeiting. Recently, lanthanide-doped nanomaterials have emerged as potential candidates that provide strong security for the products due to their excellent color tunable luminescence properties under the wide range (UV to NIR) of excitation. Therefore, the present review mainly focused on the strategies of luminescence features of lanthanide-doped downconversion/downshifting and upconversion nanomaterials and their potential uses in fighting counterfeiting. Moreover, the key barriers and opportunities to combat counterfeiting advances are discussed. In addition, the crucial factors, such as the fabrication of luminescent ink, various printing techniques employed for printing different kinds of fluorescent security labels, patterns, and codes, etc., have been highlighted. This review will provide detailed information to the readers to design the security labels based on the lanthanide-doped luminescent nanomaterials for high-tech security against counterfeiting.
Collapse
Affiliation(s)
- Pushpendra
- Energy and Environment Unit, Institute of Nano Science and Technology (INST), Mohali, Punjab 140306, India; Physics Division, School of Basic Sciences, Galgotias University, Greater Noida, Uttar Pradesh 203201, India
| | - Boddu S Naidu
- Energy and Environment Unit, Institute of Nano Science and Technology (INST), Mohali, Punjab 140306, India.
| |
Collapse
|
2
|
Ye H, Li Y, Chen X, Du W, Song L, Chen Y, Zhan Q, Wei W. Current Developments in Emerging Lanthanide-Doped Persistent Luminescent Scintillators and Their Applications. Chemistry 2024; 30:e202303661. [PMID: 38630080 DOI: 10.1002/chem.202303661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Indexed: 05/25/2024]
Abstract
Lanthanide-doped scintillators have the ability to convert the absorbed X-ray irradiation into ultraviolet (UV), visible (Vis), or near-infrared (NIR) light. Lanthanide-doped scintillators with excellent persistent luminescence (PersL) are emerging as a new class of PersL materials recently. They have attracted great attention due to their unique "self-luminescence" characteristic and potential applications. In this review, we comb through and focus on current developments of lanthanide-doped persistent luminescent scintillators (PersLSs), including their PersL mechanism, synthetic methods, tuning of PersL properties (e. g. emission wavelength, intensity, and duration time), as well as their promising applications (e. g. information storage, encryption, anti-counterfeiting, bio-imaging, and photodynamic therapy). We hope this review will provide valuable guidance for the future development of PersLSs.
Collapse
Affiliation(s)
- Huiru Ye
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yantao Li
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Xukai Chen
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Weidong Du
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Longfei Song
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yu Chen
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Qiuqiang Zhan
- Centre for Optical and Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Wei Wei
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
3
|
Yi Z, Liu P, Xu Y. Multimode Dynamic Photoluminescence of Bi 3+-Activated ZnGa 2O 4 for Optical Information Encryption. Inorg Chem 2023. [PMID: 37269329 DOI: 10.1021/acs.inorgchem.3c01147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Optical storage technology for information encryption is a popular means of safeguarding information. Herein, a Bi3+-activated ZnGa2O4 multimode dynamic photoluminescence (PL) material is developed. Upon being irradiated with an ultraviolet lamp at a fixed excitation wavelength of 254 nm, the ZnGa2O4: x% Bi3+ (x = 0.5-5.0) samples exhibit varying degrees of dynamic PL emission due to a distinct Bi3+ doping effect. The mechanism underlying the dynamic PL of ZnGa2O4: Bi3+ associated with Bi3+-activated trap concentration modulation is investigated using thermoluminescence spectra. Additionally, the ZnGa2O4: 5% Bi3+ sample shows a reversible thermally responsive dynamic PL with a color variation from blue to red upon heating from 283 to 393 K. Predesigned procedures based on single-wavelength-mediated photochromic and thermochromic dynamic PL emissions of ZnGa2O4: Bi3+ are designed for rewritable optical data storage and high-level information encryption. Also, an enhanced encryption scheme with a mask encoding technique applying a ZnGa2O4: Bi3+ hybridized polyvinylidene difluoride film is then proposed to increase the security level. Accordingly, this work provides a feasible way to rationally design dynamic PL material offering more creative designs for safeguarding information via encryption.
Collapse
Affiliation(s)
- Zishuo Yi
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, P. R. China
| | - Peng Liu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, P. R. China
| | - Yan Xu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, P. R. China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| |
Collapse
|