1
|
Akhmadeev BS, Nizameev IR, Kholin KV, Voloshina AD, Gerasimova TP, Gubaidullin AT, Romashchenko AV, Zavjalov EL, Kashnik IV, Brylev KA, Mustafina AR. Specificity of hexarhenium cluster anions for synthesis of Mn 2+-based nanoparticles with lamellar shape and pH-induced leaching for specific organ selectivity in MRI contrasting. J Colloid Interface Sci 2024; 659:1052-1062. [PMID: 38195359 DOI: 10.1016/j.jcis.2023.12.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2023] [Accepted: 12/30/2023] [Indexed: 01/11/2024]
Abstract
The present work demonstrates the structure variation of hexarhenium anionic cluster units [{Re6S8}(CN)(6-n)(OH)n]4- (n = 0, 2, 4) as the strategy to develop Mn2+-containing nanoparticles (NPs) exhibiting pH-dependent leaching. The dicyanotetrahydroxo complex [{Re6S8}(CN)2(OH)4]4- is the optimal for the synthesis of the Mn2+-based NPs with a lamellar shape exhibiting the pH-dependent aggregation and magnetic relaxation behavior. The pH-dependent behavior of the NPs derives from the easy protonation of the apical hydroxo ligands of [{Re6S8}(CN)2(OH)4]4- cluster, which triggers partial leaching of Mn2+ ions and aggregation of the NPs driven by the surface neutralization. The in vivo MRI scanning of the mice intravenously injected with the NPs indicates the preferable accumulation of the lamellar NPs within mouse intestine over liver and kidneys. This differs from the spherical NPs constructed from [{Re6Se8}(CN)6]4- units, which provide the preferable brightening of mouse liver over kidneys and intestine.
Collapse
Affiliation(s)
- B S Akhmadeev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation.
| | - I R Nizameev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - K V Kholin
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - A D Voloshina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - T P Gerasimova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - A T Gubaidullin
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - A V Romashchenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russian Federation
| | - E L Zavjalov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russian Federation
| | - I V Kashnik
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russian Federation
| | - K A Brylev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russian Federation
| | - A R Mustafina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation
| |
Collapse
|