1
|
Gusatti M, Aragão Ribeiro de Souza D, Barozzi M, Dell’Anna R, Missale E, Vanzetti L, Bersani M, Nalin M. Fabrication and Performance Evaluation of a Nanostructured ZnO-Based Solid-State Electrochromic Device. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51253-51264. [PMID: 39283192 PMCID: PMC11440456 DOI: 10.1021/acsami.4c10545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
In this study, we present an all-solid-state electrochromic device (ECD) that eliminates the need for hard-to-obtain materials and conventional liquid/gel electrolytes. Using a cost-effective and industrially scalable spray coating technique, we developed an ECD containing a layer of zinc oxide nanorods (ZnOnano) synthesized via a simple solochemical route. The device configuration includes a preformed Al-coated glass substrate, acting as a counter electrode, within a glass/Al/ZnOnano/PEDOT:PSS architecture. The device exhibits reversible switching between light blue and dark blue states upon application of -1.2 V and +2.8 V, respectively, with a significant difference in transmittance between bleached and colored states in the visible-NIR spectrum, featuring a high coloration efficiency of 275.62 cm2/C at 600 nm. The response times required for both coloring and bleaching states were 9.92 s and 7.51 s, respectively, for a sample with an active area of 5.5 × 2.5 cm2. Regarding the electrochemical stability of the ZnO-based ECD, the transmittance modulation reached around 8.01% at 600 nm after 12,800 s, following initial variations observed during the first 10 cycles. These results represent significant progress in electrochromic technology, offering a sustainable and efficient alternative to traditional ECDs. The use of economical fabrication techniques and the exclusion of critical materials highlight the potential for widespread industrial adoption of this novel ECD design.
Collapse
Affiliation(s)
- Marivone Gusatti
- Institute
of Chemistry, Department of Analytical, Physical, and Inorganic Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, São Paulo, Brazil
| | - Daniel Aragão Ribeiro de Souza
- Institute
of Chemistry, Department of Analytical, Physical, and Inorganic Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, São Paulo, Brazil
| | - Mario Barozzi
- Sensors
and Devices Center, Bruno Kessler Foundation (FBK), via Sommarive, 18, Povo, Trento 38123, Trentino, Italy
| | - Rossana Dell’Anna
- Sensors
and Devices Center, Bruno Kessler Foundation (FBK), via Sommarive, 18, Povo, Trento 38123, Trentino, Italy
| | - Elena Missale
- Sensors
and Devices Center, Bruno Kessler Foundation (FBK), via Sommarive, 18, Povo, Trento 38123, Trentino, Italy
| | - Lia Vanzetti
- Sensors
and Devices Center, Bruno Kessler Foundation (FBK), via Sommarive, 18, Povo, Trento 38123, Trentino, Italy
| | - Massimo Bersani
- Sensors
and Devices Center, Bruno Kessler Foundation (FBK), via Sommarive, 18, Povo, Trento 38123, Trentino, Italy
| | - Marcelo Nalin
- Institute
of Chemistry, Department of Analytical, Physical, and Inorganic Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, São Paulo, Brazil
| |
Collapse
|
2
|
Liu T, Tang X, Zeng Y, Li Y, Jing C, Ling F, Yang H, Zhou X. C-Rich Carbon Nitride Conjugated Polymer Enabling Ion-Migration-Induced Precise Electrochromic Display. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38050907 DOI: 10.1021/acsami.3c15567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The development of electrochromic (EC) displays has been in the challenge of displaying precise patterns, such as characters or high-resolution images of small size. High-performance EC materials as well as efficient, precise-display strategies are still urgent. To enable a microfactor-guided strategy for highly precise display, I3-/I- ion-migration-induced localized electrochromism is developed in an EC device based on the C-rich polymeric carbon nitride (CPCN). The CPCN material with an extended conjugated backbone of individual aromatic nuclei and heptazine rings has been reported possessing remarkable photorechargeable performance. Owing to the self-charging behavior, the CPCN exhibits color switching by the interfacial charge recombination with I3- ions in electrolyte and serves as the EC material with a coloration efficiency of 210.2 cm2 C-1 and an optical contrast of 48.6%. Material synthesis, electrode preparation, device design and fabrication, mechanism analysis, and performance evaluation of the CPCN-based EC display device are described.
Collapse
Affiliation(s)
- Tingting Liu
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xiao Tang
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Yue Zeng
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Yanhong Li
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Chuan Jing
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Faling Ling
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Hongmei Yang
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xianju Zhou
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| |
Collapse
|
3
|
Seddiki I, N’Diaye BI, Skene WG. Survey of Recent Advances in Molecular Fluorophores, Unconjugated Polymers, and Emerging Functional Materials Designed for Electrofluorochromic Use. Molecules 2023; 28:molecules28073225. [PMID: 37049988 PMCID: PMC10096808 DOI: 10.3390/molecules28073225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 04/08/2023] Open
Abstract
In this review, recent advances that exploit the intrinsic emission of organic materials for reversibly modulating their intensity with applied potential are surveyed. Key design strategies that have been adopted during the past five years for developing such electrofluorochromic materials are presented, focusing on molecular fluorophores that are coupled with redox-active moieties, intrinsically electroactive molecular fluorophores, and unconjugated emissive organic polymers. The structural effects, main challenges, and strides toward addressing the limitations of emerging fluorescent materials that are electrochemically responsive are surveyed, along with how these can be adapted for their use in electrofluorochromic devices.
Collapse
Affiliation(s)
- Ilies Seddiki
- Laboratoire de Caractérisation Photophysique des Matériaux Conjugués Département de Chimie, Campus MIL, Université de Montréal, CP 6128, Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada
| | - Brelotte Idriss N’Diaye
- Laboratoire de Caractérisation Photophysique des Matériaux Conjugués Département de Chimie, Campus MIL, Université de Montréal, CP 6128, Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada
| | - W. G. Skene
- Laboratoire de Caractérisation Photophysique des Matériaux Conjugués Département de Chimie, Campus MIL, Université de Montréal, CP 6128, Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada
| |
Collapse
|