1
|
Zhong L, Wang C, He J, Lin Z, Yang X, Li R, Zhan S, Zhao L, Wu D, Chen H, Tang Z, ZHi C, Lv Lyu H. Self-Charging Aqueous Zn//COF Battery with UltraHigh Self-Charging Efficiency and Rate. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314050. [PMID: 38380790 DOI: 10.1002/adma.202314050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/06/2024] [Indexed: 02/22/2024]
Abstract
Self-charging zinc batteries that combine energy harvesting technology with batteries are candidates for reliable self-charging power systems. However, the lack of rational materials design results in unsatisfactory self-charging performance. Here, a covalent organic framework containing pyrene-4,5,9,10-tetraone groups (COF-PTO) is reported as a cathode material for aqueous self-charging zinc batteries. The ordered channel structure of the COF-PTO provides excellent capacity retention of 98% after 18 000 cycles at 10 A g-1 and ultra-fast ion transfer. To visually assess the self-charging performance, two parameters, namely self-charging efficiency (self-charging discharge capacity/galvanostatic discharge capacity, η) and average self-charging rate (total discharge capacity after cyclic self-charging/total cyclic self-charging time, ν), are proposed for performance evaluation. COF-PTO achieves an impressive η of 96.9% and an ν of 30 mAh g-1 self-charge capacity per hour in 100 self-charging cycles, surpassing the previous reports. Mechanism studies reveal the co-insertion of Zn2+ and H+ double ions in COF-PTO of self-charging zinc batteries. In addition, the C═N and C═O (on the benzene) in COF-PTO are ortho structures to each other, which can easily form metal heterocycles with Zn ions, thereby driving the forward progress of the self-charging reaction and enhancing the self-charging performance.
Collapse
Affiliation(s)
- Leheng Zhong
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 51006, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Chunfang Wang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 51006, P. R. China
| | - Zhiqing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 51006, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Xiaodong Yang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- Yan'an Key Laboratory of Green Chemical Energy, Key Laboratory of New Energy & New Functional Materials, College of Chemistry and Chemical Engineering, Yan'an University Yan'an, Shaanxi, 716000, P. R. China
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Ran Li
- Yan'an Key Laboratory of Green Chemical Energy, Key Laboratory of New Energy & New Functional Materials, College of Chemistry and Chemical Engineering, Yan'an University Yan'an, Shaanxi, 716000, P. R. China
| | - Shuai Zhan
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Linwei Zhao
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Dan Wu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Hui Chen
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Zijie Tang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Chunyi ZHi
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Haiming Lv Lyu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
2
|
Bian S, Yang Y, Liu S, Ye F, Tang H, Wu Y, Hu L. Recent Progress of the Cathode Material Design for Aqueous Zn-Organic Batteries. Chemistry 2023:e202303917. [PMID: 38093171 DOI: 10.1002/chem.202303917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Indexed: 01/24/2024]
Abstract
Aqueous zinc-ion batteries (ZIBs) have emerged as the most promising candidate for large-scale energy storage due to their inherent safety, environmental friendliness, and cost-effectiveness. Simultaneously, the utilization of organic electrode materials with renewable resources, environmental compatibility, and diverse structures has sparked a surge in research and development of aqueous Zn-organic batteries (ZOBs). A comprehensive review is warranted to systematically present recent advancements in design principles, synthesis techniques, energy storage mechanisms, and zinc-ion storage performance of organic cathodes. In this review article, we comprehensively summarize the energy storage mechanisms employed by aqueous ZOBs. Subsequently, we categorize organic cathode materials into small-molecule compounds and high-molecular polymers respectively. Novel polymer materials such as conjugated polymers (CPs), conjugated microporous polymers (CMPs), and covalent organic frameworks (COFs) are highlighted with an overview of molecular design strategies and structural optimization based on organic cathode materials aimed at enhancing the performance of aqueous ZOBs. Finally, we discuss the challenges faced by aqueous ZOBs along with future prospects to offer insights into their practical applications.
Collapse
Affiliation(s)
- Shuyang Bian
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yunting Yang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Shuo Liu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Fei Ye
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Hongjian Tang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy & Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Yuping Wu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy & Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Linfeng Hu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
3
|
Liu N, Liu Z, Li J, Ge Z, Fan L, Zhao C, Guo Z, Chen A, Lu X, Zhang Y, Zhang N, Zhang X. Unlocking the Capacity of Bismuth Oxide by a Redox Mediator Strategy for High-Performance Aqueous Zn-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37903333 DOI: 10.1021/acsami.3c11677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Many cathode materials store zinc ions based on the intercalation reaction mechanism in neutral aqueous Zn-ion batteries, and the structural design of the cathodes has been stuck in the curing mode by extending the ion diffusion channel. Here, we first develop halide ions to unlock the electrochemical activity of conversion-type Bi2O3 in aqueous Zn-ion batteries. Notably, the iodide ion shows the best performance compatibility with the Bi2O3 cathode. The electrochemical reaction mechanism studies show that iodide ions can be regarded as a redox medium to reduce the charge-transfer activation energy and motivate the conversion of Bi2O3 from Bi3+ to Bi0 during the cycle. Unsurprising, the discharge-specific capacity can reach 436.8 mAh g-1 at 0.5 A g-1 and achieve a cyclic lifespan of 6000 cycles at a current density of 3 A g-1. The activation of the Bi2O3 conversion reaction by iodide ions is of great significance for broadening the research range of ZIB cathode materials.
Collapse
Affiliation(s)
- Nannan Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Zeping Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Jiyang Li
- Yangtze Dleta Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Zhen Ge
- Yangtze Dleta Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Lishuang Fan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Chenyang Zhao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Zhikun Guo
- School of Chemistry and Chemical Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Aosai Chen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Xingyuan Lu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Yu Zhang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Naiqing Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
- Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150001, China
| | - Xigui Zhang
- Yangtze Dleta Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| |
Collapse
|