1
|
Han L, Sun H, Li W, Liu L, Gan G, Qian Z, Li J. Constructing binder-free 3D thermal networks with hexagonal boron nitride of varying sizes to enhance polydimethylsiloxane composites: a comparative study. RSC Adv 2025; 15:17388-17396. [PMID: 40416631 PMCID: PMC12101106 DOI: 10.1039/d5ra01204j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/28/2025] [Indexed: 05/27/2025] Open
Abstract
As electronic devices become more compact and power-dense, the demand for efficient thermal management materials continues to rise. To address the common issues in conventional thermally conductive composites-namely, poor filler dispersion, high interfacial thermal resistance caused by binders, and complex fabrication processes-this study proposes a novel strategy for constructing binder-free three-dimensional hexagonal boron nitride thermal networks (3D BN) within a polydimethylsiloxane (PDMS) matrix. By leveraging the decomposition behavior of ammonium bicarbonate (NH4HCO3), this approach enables the fabrication of composites with enhanced thermal conductivity and simplified processing. The 3D BN/PDMS composites were prepared via a straightforward process involving blending, cold pressing, drying, and vacuum impregnation. Characterization and testing reveal that the 3D BN thermal network and BN particle size are critical factors influencing the composites' TCs. The resulting 3D BN/PDMS composites exhibit an outstanding TC of 3.889 W m-1 K-1 when the BN particle size is 20 μm and the filler content is 40.70 vol%. This study offers a novel approach to designing and developing high-performance thermally conductive composites, with significant potential for practical applications.
Collapse
Affiliation(s)
- Liping Han
- Sino-Platinum Metals Co., Ltd Kunming 650106 People's Republic of China
- Faculty of Material Science and Engineering, Kunming University of Science and Technology Kunming 650093 People's Republic of China
| | - Hu Sun
- Sino-Platinum Metals Co., Ltd Kunming 650106 People's Republic of China
| | - Wei Li
- Sino-Platinum Metals Co., Ltd Kunming 650106 People's Republic of China
| | - Li Liu
- Faculty of Material Science and Engineering, Kunming University of Science and Technology Kunming 650093 People's Republic of China
- School of Electrical Engineering, Chongqing University of Arts and Sciences Chongqing 402160 People's Republic of China
| | - Guoyou Gan
- Faculty of Material Science and Engineering, Kunming University of Science and Technology Kunming 650093 People's Republic of China
| | - Zhuo Qian
- Faculty of Material Science and Engineering, Kunming University of Science and Technology Kunming 650093 People's Republic of China
| | - Junpeng Li
- Sino-Platinum Metals Co., Ltd Kunming 650106 People's Republic of China
| |
Collapse
|
2
|
Liu L, Xu C, Yang Y, Fu C, Ma F, Zeng Z, Wang G. Graphene-based polymer composites in thermal management: materials, structures and applications. MATERIALS HORIZONS 2025; 12:64-91. [PMID: 39373527 DOI: 10.1039/d4mh00846d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Graphene, with its high thermal conductivity (k), excellent mechanical properties, and thermal stability, is an ideal filler for developing advanced high k and heat dissipation materials. However, creating graphene-based polymer nanocomposites (GPNs) with high k remains a significant challenge to meet the demand for efficient heat dissipation. Here, the effects of graphene material and structure on thermal properties are investigated from both microscopic and macroscopic perspectives. Initially, it briefly introduces the influence of graphene structural parameters on its intrinsic k, along with summarizing methods to adjust these parameters. Various techniques for establishing different thermal conductivity pathways at the macroscopic scale (including filler hybridization, 3D networks, horizontal alignment, and vertical alignment) are reviewed, along with their respective advantages and disadvantages. Furthermore, we discuss the applications of GPNs as thermal interface materials (TIMs), phase change materials (PCMs), and smart responsive thermal management materials in the field of thermal management. Finally, the current challenges and future perspectives of GPN research are discussed. This review offers researchers a comprehensive overview of recent advancements in GPNs for thermal management and guidance for developing the next generation of thermally conductive polymer composites.
Collapse
Affiliation(s)
- Luqi Liu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chenchen Xu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Yuequan Yang
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Chao Fu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Fuliang Ma
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Zhixiang Zeng
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Gang Wang
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| |
Collapse
|
3
|
Yan J, Cai Y, Zhang H, Han M, Liu X, Chen H, Cheng C, Lei T, Wang L, Wang H, Xiong S. Rapid Thermochromic and Highly Thermally Conductive Nanocomposite Based on Silicone Rubber for Temperature Visualization Thermal Management in Electronic Devices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7883-7893. [PMID: 38299449 DOI: 10.1021/acsami.3c17947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Effective heat dissipation and real-time temperature monitoring are crucial for ensuring the long-term stable operation of modern, high-performance electronic products. This study proposes a silicon rubber polydimethylsiloxane (PDMS)-based nanocomposite with a rapid thermal response and high thermal conductivity. This nanocomposite enables both rapid heat dissipation and real-time temperature monitoring for high-performance electronic products. The reported material primarily consists of a thermally conductive layer (Al2O3/PDMS composites) and a reversible thermochromic layer (organic thermochromic material, graphene oxide, and PDMS nanocoating; OTM-GO/PDMS). The thermal conductivity of OTM-GO/Al2O3/PDMS nanocomposites reached 4.14 W m-1 K-1, reflecting an increase of 2200% relative to that of pure PDMS. When the operating temperature reached 35, 45, and 65 °C, the surface of OTM-GO/Al2O3/PDMS nanocomposites turned green, yellow, and red, respectively, and the thermal response time was only 30 s. The OTM-GO/Al2O3/PDMS nanocomposites also exhibited outstanding repeatability and maintained excellent color stability over 20 repeated applications.
Collapse
Affiliation(s)
- Junbao Yan
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| | - Yuhan Cai
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| | - Hanwen Zhang
- Department of Mechanical Engineering, Faculty of Engineering, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Mingyue Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xueyang Liu
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| | - Haojie Chen
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| | - Cui Cheng
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| | - Tong Lei
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| | - Luoxin Wang
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| | - Hua Wang
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| | - Siwei Xiong
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| |
Collapse
|
4
|
Wang Z, Hou D, Wang F, Zhou J, Cai N, Guo J. Facile and Scalable Strategy for Fabricating Highly Thermally Conductive Epoxy Composites Utilizing 3D Graphitic Carbon Nitride Nanosheet Skeleton. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37276584 DOI: 10.1021/acsami.3c05082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The application of high-performance thermal interface materials (TIMs) for thermal management is commonly used to tackle the problem of heat accumulation, which influences the performance and reliability of microelectronic devices. Herein, a novel three-dimensional (3D) carbon nitride nanosheet (CNNS)/epoxy composite with high thermal conductivity was developed by introducing 3D CNNS skeleton fillers prepared by a facile and scalable strategy assisted by a salt template. Benefiting from the continuous heat transfer pathways formed in the CNNS skeleton, 17.0 wt % 3D CNNS/epoxy composites achieve a superior thermal conductivity of 1.27 W/m·K, which is 6.35 and 1.57 times higher than those of epoxy resin and convention CNNS/epoxy, respectively. With the aid of theoretical model analysis and finite element simulation, the pronounced enhancement effect of the 3D CNNS skeleton on the thermal conductivity of epoxy composites is found to be attributed to the continuous 3D CNNS thermally conductive network, the diminished CNNS-CNNS interfacial thermal resistance, and the effective interfacial interactions between epoxy and CNNS. In addition, the 3D CNNS/epoxy composites possess high electrical insulation and desirable mechanical strength. Therefore, 3D CNNS/epoxy composites are promising TIMs for advanced electronic thermal management.
Collapse
Affiliation(s)
- Zelong Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
| | - Dajun Hou
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Fang Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
| | - Jingjing Zhou
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Ning Cai
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
| | - Jia Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
| |
Collapse
|