1
|
Zhang W, Li Y, Song X, Yang H, Kang Z, Zheng Y, Tao X. Dual-Site Passivation Coupling Internal Encapsulation via 3,5-Bis(trifluoromethyl)benzenethiol for Efficient and Stable Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2025; 17:18441-18449. [PMID: 40085543 DOI: 10.1021/acsami.5c00846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Perovskite solar cells (PSCs) have made significant progress in efficiency, but their long-term operational stability remains an important yet challenging issue. Here, a dual-site passivation coupling internal encapsulation strategy is developed by introducing 3,5-bis(trifluoromethyl)-benzenethiol (35BBT) at the perovskite (PVK)/hole transport layer (HTL) interface. 35BBT provides dual active sites containing sulfur (S) atoms and fluorine (F) atoms, where the S atoms in the sulfhydryl group and the F atoms in the trifluoromethyl group coordinate with unpaired Pb2+ to form coordinate bonds, meanwhile the F atoms in the trifluoromethyl group form hydrogen bonds with organic cations. This dual-site passivation mitigates deep and shallow defects at the PVK/HTL interface. Notably, 35BBT, with hydrophobic trifluoromethyl and benzene rings covering the perovskite layer, enables internal encapsulation to protect the perovskite films from water and oxygen invasion. Consequently, the Ag-based device with 35BBT treatment achieves an efficiency enhancement from 22.03% to 23.86%, retaining 89.1% of its initial efficiency even after 2000 h of air exposure. This fabricated device also exhibits long-term thermal stability at 60 °C. This study offers an avenue for simultaneously passivating deep and shallow defects at the PVK/HTL interface and inhibiting water/oxygen erosion, thereby enabling the fabrication of efficient and stable PSCs for future commercial applications.
Collapse
Affiliation(s)
- Wanqi Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yan Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiangfei Song
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - He Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zihu Kang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Zheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xia Tao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Zhao B, Zhang T, Song C, Zhu S, Wang T, Sun X, Liu H, Chen Y, Li X. Glutathione-Coated Gold Nanoparticles Enabling Bifunctional Therapy at the Buried Interface for Efficient and UV-Resistant Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39058923 DOI: 10.1021/acsami.4c07458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Very recently, the poor contact between the perovskite and carrier selective layer has been regarded as a critical issue for improving the performance and stability of perovskite solar cells (PSCs). In this study, the buried interface of regularly structured PSCs has been targeted. Glutathione-coated gold nanoparticles (GSH-AuNPs) are used as double-sided passivating agents to improve the quality of the perovskite films. It has been demonstrated that the GSH-AuNPs interact strongly with the SnO2 underlayer and the upper perovskite layer, significantly reducing the defect densities of this interface. Thus, the power conversion efficiency (PCE) of the PSCs can be increased from 20.46% (control, 19.38%, IPCE corrected) to 22.22% (GSH-AuNPs modified, 21.10%, IPCE corrected) with notable enhancement in Voc and FF. Moreover, the strong interaction between the C═O groups of GSH-AuNPs and the undercoordinated Pb2+ species of the perovskite films inhibits the formation of metallic Pb0. As a result, the unencapsulated GSH-AuNPs-modified devices retained 80% of their initial PCEs after 1000 h at ambient conditions, with a relative humidity (RH) of 60 ± 5%. UV-resistant PSCs have also been demonstrated after introducing GSH-AuNPs. Therefore, our findings demonstrate the bidirectional therapy strategy as a feasible approach for achieving efficient and UV-resistant PSCs.
Collapse
Affiliation(s)
- Baohua Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Teng Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Chenhao Song
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Shihui Zhu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Tailin Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xinyu Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Heyuan Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - YanLi Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xiyou Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| |
Collapse
|
3
|
Zhang X, Gang Y, Jiang S, Li M, Xue H, Li X. One-Stone-for-Two-Birds Method to Improve the SnO 2 Layers for High Power-per-Weight Flexible Perovskite Solar Cell Mini-modules. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27368-27380. [PMID: 38747540 DOI: 10.1021/acsami.4c03583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Maintaining the power conversion efficiency (PCE) of flexible perovskite solar cells (fPSCs) while decreasing their weight is essential to utilize their lightweight and flexibility as much as possible for commercialization. Strengthening the interfaces between functional layers, such as flexible substrates, charge transport layers, and perovskite active layers, is critical to addressing the issue. Herein, we propose a feasible and one-stone-for-two-birds method to improve the electron transport layer (ETL), SnO2, and the interface between the ETL and perovskite layer simultaneously. In detail, poly(acrylate ammonium) (PAAm), a low-cost polymer with a long chain structure, is added into the SnO2 aqueous solution to reduce the aggregation of SnO2 nanoparticles, resulting in the deposition of a conformal and high-quality ETL film on the tin-doped indium oxide film surface. Simultaneously, PAAm addition can effectively regulate the crystallization of the perovskite films, strengthening the interface between the SnO2 film and the buried surface of the perovskite layer. The outstanding PCEs of 22.41% on small-scale fPSCs and 18.54% on fPSC mini-modules are among the state-of-the-art n-i-p type fPSCs. Moreover, the fPSC mini-module on the 20 μm-thick flexible substrate shows a comparable PCE with that of the fPSC mini-module on the 125 μm-thick flexible substrate, exhibiting a high power-to-weight of 5.097 W/g. This work provides an easy but essential direction for further applications of fPSCs in diverse scenarios.
Collapse
Affiliation(s)
- Xiao Zhang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Yong Gang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Shusen Jiang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Mingpo Li
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Hao Xue
- College of Materials, Xiamen University, Xiamen 361005, China
| | - Xin Li
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
4
|
Wang Y, Li Y, Deng F, Song X, Zhang W, Tao X. Multifunctional Biomolecules Bridging a Buried Interface for Efficient Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38600706 DOI: 10.1021/acsami.4c01496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The inevitably positively and negatively charged defects on the SnO2/perovskite buried interface often lead to nonradiative recombination of carriers and unfavorable alignment of energy levels in perovskite solar cells (PSCs). Interface engineering is a reliable strategy to manage charged defects. Herein, the nicotinamide adenine dinucleotide (NAD) molecules with multiple active groups of ─P=O, ─P-O, and ─NH2 are introduced to bridge the SnO2/perovskite buried interface for achieving simultaneous elimination of positively and negatively charged defects. We demonstrate that the ─P=O and ─P-O groups in NAD not only fix the uncoordinated Pb2+ but also fill the oxygen vacancies (VO) on the SnO2 layer to eliminate positively charged defects. Meanwhile, ─NH2 groups form hydrogen bonds with PbI2 to reduce the number of negatively charged defects. In addition, the NAD biomolecules as a bridge induce high perovskite crystallization and accelerated electronic transfer along with favorable energy band alignment between SnO2 and perovskite. Finally, the PSCs with the ITO/SnO2/NAD/Cs0.15FA0.75MA0.1PbI3/Spiro-OMeTAD/Ag structure deliver an improvement in the power conversion efficiency from 20.49 to 23.18% with an excellent open-circuit voltage (Voc) of 1.175 V. This work demonstrates that interface engineering through multifunctional molecular bridges with various functional groups is an effective approach to improve the performance of PSCs by eliminating charged defects and simultaneously regulating energy level alignment.
Collapse
Affiliation(s)
- Yifei Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yan Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fei Deng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiangfei Song
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wanqi Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xia Tao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
5
|
Wang Y, Cao Q, Xiang X, Yu J, Zhou J. Tailoring the Buried Interface by Dipolar Halogen-Substituted Arylamine for Efficient and Stable Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38477104 DOI: 10.1021/acsami.4c00606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Improving the quality of the buried interface is decisive for achieving stable and high-efficiency perovskite solar cells. Herein, we report the interface engineering by using dipolar 2,4-difluoro-3,5-dichloroaniline (DDE) as the adhesive between titanium dioxide (TiO2) and MAPbI3. By manipulation of the anchoring groups of DDE, this molecule not only passivated defects of TiO2 but also optimized the energy level alignment. Furthermore, the perovskite film on the modified TiO2 surface showed improved crystallinity, released residual stress, and reduced trap states. Therefore, these benefits directly contribute to achieving a power conversion efficiency of up to 22.10%. The unencapsulated device retained 90% of initial power conversion efficiencies (PCE) after continuous light illumination for 1000 h and 93% of initial PCE after exposure to air with a relative humidity of 30-40% for over 3000 h. Moreover, the performance of PSCs based on FA0.15MA0.85PbI3 has also increased from 20.48 to 23.51%. Our results demonstrate the effectiveness and universality of dipolar halogen-substituted arylamine (DDE) for enhancing PSC performance.
Collapse
Affiliation(s)
- Yan Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qin Cao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xuwu Xiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiangsheng Yu
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jie Zhou
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
6
|
Li Y, Yao D, Tang Z, Jiang B, Li C, Gao Y, Tian N, Wang J, Zheng G, Long F. SnO 2-Perovskite Interface Engineering Based on Bifacial Passivation via Multifunctional N-(2-Acetamido)-2-aminoethanesulfonic Acid toward Efficient and Stable Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9388-9399. [PMID: 38324460 DOI: 10.1021/acsami.3c16025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Bifacial passivation on both electron transport materials and perovskite light-absorbing layers as a straightforward technique is used for gaining efficient and stable perovskite solar cells (PSCs). To develop this strategy, organic molecules containing multiple functional groups can maximize the effect of defect suppression. Based on this, we introduce N-(2-acetamido)-2-aminoethanesulfonic acid (ACES) at the interface between tin oxide (SnO2) and perovskite. The synergistic effect of multiple functional groups in ACES, including amino, carbonyl (C═O), and sulfonic acid (S═O) groups, promotes charge extraction of SnO2 and provides an improved energy level alignment for charge transfer. Furthermore, S═O in ACES effectively passivates the defects of uncoordinated Pb2+ in perovskite films, resulting in enhanced crystallinity and decreased nonradiative recombination at the buried interface. The power conversion efficiency (PCE) of related PSCs increases from 20.21% to 22.65% with reduced J-V hysteresis after interface modification with ACES. Notably, upon being stored at a low relative humidity of 40 ± 5% over 2000 h and high relative humidity of 80 ± 5% over 1000 h, the unencapsulated ACES-modified device retains up to 90% and 80% of their initial PCE, respectively. This study deepens defect passivation engineering on the buried interface of perovskites for realizing efficient and stable solar cells.
Collapse
Affiliation(s)
- Ying Li
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Disheng Yao
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China
- Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Ziqi Tang
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Bo Jiang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Chao Li
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Yihua Gao
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China
- Center for Nanoscale Characterization & Devices (CNCD), School of Physics and Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, People's Republic of China
| | - Nan Tian
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Jilin Wang
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China
- Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Guoyuan Zheng
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China
- Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Fei Long
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China
- Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, Guilin University of Technology, Guilin 541004, People's Republic of China
| |
Collapse
|
7
|
Chen Y, Qi H, Wang K, Kang Z, Pan G, Everett CR, Müller-Buschbaum P, Tong Y, Wang H. Multifunctional Buried Interface Modification Enables Efficient Tin Perovskite Solar Cells. SMALL METHODS 2024; 8:e2300029. [PMID: 37208789 DOI: 10.1002/smtd.202300029] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/06/2023] [Indexed: 05/21/2023]
Abstract
Tin perovskite solar cells (PSCs) are considered promising candidates to promote lead-free perovskite photovoltaics. However, their power conversion efficiency (PCE) is limited by the easy oxidation of Sn2+ and low quality of tin perovskite film. Herein, an ultra-thin 1-carboxymethyl-3-methylimidazolium chloride (ImAcCl) layer is used to modify the buried interface in tin PSCs, which can induce multifunctional improvements and remarkably enhance the PCE. The carboxylate group (CO) and the hydrogen bond donor (NH) in ImAcCl can interact with tin perovskites, thus significantly suppressing the oxidation of Sn2+ and reducing the trap density in perovskite films. The interfacial roughness is reduced, which contributes to a high-quality tin perovskite film with increased crystallinity and compactness. In addition, the buried interface modification can modulate the crystal dimensionality, favoring the formation of large bulk-like crystals instead of low-dimensional ones in tin perovskite films. Therefore, the charge carrier transport is effectively promoted and the charge carrier recombination is suppressed. Eventually, tin PSCs show a remarkably enhanced PCE from 10.12% to 12.08%. This work highlights the importance of buried interface engineering and provides an effective way to realize efficient tin PSCs.
Collapse
Affiliation(s)
- Yali Chen
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Heng Qi
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Kun Wang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518063, China
| | - Ziyong Kang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Guangjiu Pan
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, 85748, Garching, Germany
| | - Christopher R Everett
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, 85748, Garching, Germany
| | - Peter Müller-Buschbaum
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, 85748, Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, 85748, Garching, Germany
| | - Yu Tong
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hongqiang Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
8
|
Wang H, Luo H, Yang L, Liu X, Li H, Liu S, Tang Y, Ye Z, Long W. Simultaneous Interfacial Defect Passivation and Bottom-Up Excess PbI 2 Management via Rubidium Chloride in Highly Efficient Perovskite Solar Cells with Suppressed Hysteresis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4854-4862. [PMID: 38252590 DOI: 10.1021/acsami.3c17743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
In halide perovskite solar cells (PSCs), moderate lead iodide (PbI2) can enhance device efficiency by providing some passivation effects, but extremely active PbI2 leads to the current density-voltage hysteresis effect and device instability. In addition, defects distributed on the buried interface of tin oxide (SnO2)/perovskite will lead to the photogenerated carrier recombination. Here, rubidium chloride (RbCl) is introduced at the buried SnO2/perovskite interface, which not only acts as an interfacial passivator to interact with the uncoordinated tin ions (Sn4+) and fill the oxygen vacancy on the SnO2 surface but also converts PbI2 into an inactive (PbI2)2RbCl compound to stabilize the perovskite phase via a bottom-up evolution effect. These synergistic effects deliver a champion PCE of 22.13% with suppressed hysteresis for the W RbCl PSCs, in combination with enhanced environmental and thermal stability. This work demonstrates that the interfacial defect passivation and bottom-up excess PbI2 management using RbCl modifiers are promising strategies to address the outstanding challenges associated with PSCs.
Collapse
Affiliation(s)
- Hanyu Wang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Hu Luo
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Lang Yang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Xingchong Liu
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Haimin Li
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Shuqian Liu
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Yanling Tang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Zongbiao Ye
- Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Wei Long
- Tongwei Solar Co., Ltd., Chengdu 610200, China
| |
Collapse
|
9
|
Li Y, Song X, Deng F, Wang Y, Yu Y, Han X, Tao X. Synergistic Defect Passivation and Crystallization Modulation in Efficient Perovskite Solar Cells: The Case of Multifunctional 2-Anisidine-4-Sulfonic Acid. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48207-48215. [PMID: 37787659 DOI: 10.1021/acsami.3c10423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
With the continuous development of the performance of perovskite solar cells, the high-density defects on the perovskite film surface and grain boundaries as well as undesired perovskite crystallization are increasingly emerging as challenges to their commercial application. Herein, a dye intermediate 2-anisidine-4-sulfonic acid (2A4SA), containing sulfonic acid group (SO3-), amino group (-NH2), methoxy group (CH3O-), and benzene ring, which exhibit a synergistic effect in comprehensive defect passivation and crystallization modulation, is incorporated. Detailed investigations show that the SO3- of 2A4SA with high electronegativity firmly chelates with uncoordinated lead ions through the coordination interaction, while the -NH2 and the CH3O- of 2A4SA separately immobilize iodide ions and organic cations in the perovskite lattice through hydrogen bonds, enabling substantially decreased nonradiative recombination and trap state density. Meanwhile, 2A4SA molecules attached to the surface of perovskite nuclei can delay crystallization kinetics and promote preferred vertical growth orientation, thereby attaining the high-crystallinity and large-size-grain perovskite films. Consequently, the 2A4SA-doped device with the structure ITO/SnO2/Cs0.15FA0.75MA0.10PbI3 (2A4SA)/Spiro-OMeTAD/Ag presents a splendid power conversion efficiency (PCE) of 23.06% accompanied by increased open-circuit voltage (1.15 V) and fill factor (82.17%). Furthermore, the optimized film and device demonstrate enhanced long-term stability. The unencapsulated optimized device retains ≈80% of the original PCE after 1000 h upon exposure to ambient atmosphere (20-50% RH), whereas the control group is only 56.8%.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiangfei Song
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fei Deng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yifei Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yingchun Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xue Han
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Xia Tao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
10
|
Wang Y, Wu Z, Cao Q, Xia Y, Zhou Y, Yu J, Zhou J. Multifunctional Thiophene Cascading SnO 2/Perovskite Interfaces for Efficient and Stable MAPbI 3 Photovoltaics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38154-38162. [PMID: 37505507 DOI: 10.1021/acsami.3c08970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The power conversion efficiency (PCE) and stability of n-i-p perovskite solar cells (PSCs) are significantly affected by inherent defects of SnO2 and perovskite layers. In this work, we incorporate 2-bromo-3-thiophenic acid (BrThCOOH) as a multifunctional passivant to simultaneously passivate the defects of SnO2 surface and perovskite layer. BrThCOOH permeates evenly into the MAPbI3 and coordinates with Pb2+ and iodine vacancies (VI+) to reduce surface defect density and inhibit the decomposition of MAPbI3. Carboxylic acid effectively passives the oxygen vacancy on the surface of SnO2 through coordination bonds, reducing the probability of electron capture by SnO2 surface defects, thus contributing to electron transport in device. The interaction of BrThCOOH with MAPbI3 and SnO2 surfaces leads to an upward shift in energy levels, reducing energy loss during charge migration. The optimal MAPbI3 device with BrThCOOH-modified SnO2 (T-SnO2) reveals an improved PCE of 21.12%, much higher than that of the control one (19.12%). The hydrophobicity of BrThCOOH-modified MAPbI3 is also improved, which is beneficial to the durability of the device. After 100 h of storage in the environment, the generated PSCs maintain their initial PCE of 75%, demonstrating excellent long-term stability without any encapsulation.
Collapse
Affiliation(s)
- Yan Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zinan Wu
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qin Cao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuanhao Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yu Zhou
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiangsheng Yu
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jie Zhou
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
11
|
Nie J, Niu B, Wang Y, He Z, Zhang X, Zheng H, Lei Y, Zhong P, Ma X. Multi-functional MXene quantum dots enhance the quality of perovskite polycrystalline films and charge transport for solar cells. J Colloid Interface Sci 2023; 646:517-528. [PMID: 37209551 DOI: 10.1016/j.jcis.2023.05.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/22/2023]
Abstract
Recently, two-dimensional (2D) transition metal carbides/nitrides (MXenes) find applications in perovskite solar cells (PSCs), due to their high conductivity, tunable electronic structures, and rich surface chemistry, etc. However, the integration of 2D MXenes into PSCs is limited by their large lateral sizes and relatively-small surface volume ratios, and the roles of MXenes in PSCs are still ambiguous. In this paper, zero-dimensional (0D) MXene quantum dots (MQDs) with an average size of 2.7 nm are obtained through clipping step by step combining a chemical etching and a hydrothermal reaction, which display rich terminals (i.e., -F, -OH, -O) and unique optical properties. The 0D MQDs incorporated into SnO2 electron transport layers (ETLs) of PSCs exhibit multifunction: 1) increasing the electrical conductivity of SnO2, 2) promoting better alignments of energy band positions at the perovskite/ETL interface, 3) improving the film quality of atop polycrystalline perovskite. Particularly, the MQDs not only tightly bond with the Sn atom for decreasing the defects of SnO2, but also interact with the Pb2+ of perovskite. As a result, the defect density of PSCs is significantly decreased from 5.21 × 1021 to 6.4 × 1020 cm-3, leading to enhanced charge transport and reduced nonradiative recombination. Furthermore, the power conversion efficiency (PCE) of PSCs is substantially improved from 17.44% to 21.63% using the MQDs-SnO2 hybrid ETL compared with the SnO2 ETL. Besides, the stability of the MQDs-SnO2-based PSC is greatly enhanced, with only ~4% degradation of the initial PCE after storage in ambient condition (25 °C, RH: 30-40%) for 1128 h, as compared to that of the reference device with a rapid degradation of ~60% of initial PCE after 460 h. And MQDs-SnO2-based PSC also presents higher thermal stability than SnO2-based device with continuous heating for 248 h at 85 °C. The unique MQDs exhibited in this work might also find other exciting applications such as light-emitting diodes, photodetectors, and fluorescent probes.
Collapse
Affiliation(s)
- Junli Nie
- School of Advanced Materials and Nanotechnology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi'an 710126, Shaanxi, People's Republic of China
| | - Bingqiang Niu
- School of Advanced Materials and Nanotechnology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi'an 710126, Shaanxi, People's Republic of China
| | - Yijin Wang
- School of Advanced Materials and Nanotechnology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi'an 710126, Shaanxi, People's Republic of China
| | - Zhang He
- School of Advanced Materials and Nanotechnology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi'an 710126, Shaanxi, People's Republic of China
| | - Xingmao Zhang
- School of Advanced Materials and Nanotechnology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi'an 710126, Shaanxi, People's Republic of China
| | - HuanHuan Zheng
- School of Advanced Materials and Nanotechnology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi'an 710126, Shaanxi, People's Republic of China
| | - Yimin Lei
- School of Advanced Materials and Nanotechnology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi'an 710126, Shaanxi, People's Republic of China; State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an 710071, Shaanxi, People's Republic of China
| | - Peng Zhong
- School of Advanced Materials and Nanotechnology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi'an 710126, Shaanxi, People's Republic of China; State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an 710071, Shaanxi, People's Republic of China.
| | - Xiaohua Ma
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an 710071, Shaanxi, People's Republic of China; School of Microelectronics, Xidian University, Xi'an 710071, Shaanxi, People's Republic of China
| |
Collapse
|
12
|
Du B, He K, Zhao X, Li B. Defect Passivation Scheme toward High-Performance Halide Perovskite Solar Cells. Polymers (Basel) 2023; 15:polym15092010. [PMID: 37177158 PMCID: PMC10180992 DOI: 10.3390/polym15092010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Organic-inorganic halide perovskite solar cells (PSCs) have attracted much attention in recent years due to their simple manufacturing process, low cost, and high efficiency. So far, all efficient organic-inorganic halide PSCs are mainly made of polycrystalline perovskite films. There are transmission barriers and high-density defects on the surface, interface, and grain boundary of the films. Among them, the deep-level traps caused by specific charged defects are the main non-radiative recombination centers, which is the most important factor in limiting the photoelectric conversion efficiency of PSCs devices to the Shockley-Queisser (S-Q) theoretical efficiency limit. Therefore, it is imperative to select appropriate passivation materials and passivation strategies to effectively eliminate defects in perovskite films to improve their photovoltaic performance and stability. There are various passivation strategies for different components of PSCs, including interface engineering, additive engineering, antisolvent engineering, dopant engineering, etc. In this review, we summarize a large number of defect passivation work to illustrate the latest progress of different types of passivators in regulating the morphology, grain boundary, grain size, charge recombination, and defect density of states of perovskite films. In addition, we discuss the inherent defects of key materials in carrier transporting layers and the corresponding passivation strategies to further optimize PSCs components. Finally, some perspectives on the opportunities and challenges of PSCs in future development are highlighted.
Collapse
Affiliation(s)
- Bin Du
- School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Kun He
- School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Xiaoliang Zhao
- School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Bixin Li
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi'an 710072, China
| |
Collapse
|