1
|
Vasileva AA, Demakov PA, Guselnikova TY, Ryadun AA, Fedin VP, Dybtsev DN. Solvatomorphic phase transitions and tunable luminescence emission in lanthanide metal-organic frameworks. Dalton Trans 2025; 54:641-648. [PMID: 39560504 DOI: 10.1039/d4dt02613f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Four new metal-organic frameworks with the formulae [Sm2(phen)2(NO3)2(chdc)2]·2solv, where solv = N,N-dimethylformamide (DMF; 1), N,N-dimethylacetamide (DMA; 2), N,N-diethylformamide (DEF; 3), N-formylpiperidine (NFP; 4), phen = 1,10-phenanthroline and chdc2- = trans-1,4-cyclohexanedicarboxylate were synthesized and structurally characterized. These compounds are based on similar binuclear samarium(III)-carboxylate blocks, bound by flexible chdc linkers into layered sql-type coordination networks. The amide solvents drive different intralayer block orientations between 1 and 2-4 and different layer-to-layer packings in all the described compounds. A pronounced dependence of the emission color upon the excitation wavelength variation was determined for 1-4, while the relative impacts of Sm3+ and phen emission on overall luminescence were found to depend strongly on these packings, and their reasonable correlation to the distances between the closest π-π-stacked phen moieties in the structures was revealed. Phase transitions between compounds 1-4 were studied by means of powder X-ray diffraction. Additionally, bimetallic near-white luminophores were obtained for phases 3 and 4 by doping their synthetic systems with a minor (∼5%) Tb3+ additive. In general, this study shows a possibility of tuning the luminescence properties of porous metal-organic frameworks by minor structural differences induced by solvent-driven dynamics with no apparent quenching or other direct impact on the optical properties of the included solvent.
Collapse
Affiliation(s)
- Alena A Vasileva
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Pavel A Demakov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
| | - Tatiana Y Guselnikova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
| | - Alexey A Ryadun
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
| | - Vladimir P Fedin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
| | - Danil N Dybtsev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
| |
Collapse
|
2
|
Watanabe S, Hiraide S, Arima H, Fukuta A, Mori M, Tanaka H, Miyahara MT. Size-dependent guest-memory switching of the flexible and robust adsorption characteristics of layered metal-organic frameworks. SCIENCE ADVANCES 2024; 10:eadr1387. [PMID: 39642228 PMCID: PMC11623303 DOI: 10.1126/sciadv.adr1387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/01/2024] [Indexed: 12/08/2024]
Abstract
Flexible-robust metal-organic frameworks (MOFs), which exhibit unique hybrid nature comprising both flexible and rigid framework characteristics, exhibit high potential for hydrocarbon separations. However, no clear guidelines have been established to regulate their hybrid characteristics owing to limited understanding of their adsorption mechanism. This study investigates the effects of the particle size of a flexible-robust MOF on its adsorption and structural transition behaviors. The robust nature originates from the structural transition of a metastable guest-free structure, while its flexible nature arises from another guest-free structure. The type of guest-free structure is predominantly determined by the particle size; particles below the critical size are trapped in the metastable guest-free structure. Notably, the critical size varies with the type of guest molecule to be removed; consequently, the difference in critical size results in guest-memory characteristics, enabling guest-free structure switching. These results underscore the importance of controlling the particle size to fine-tune hybrid adsorption characteristics of flexible-robust MOFs.
Collapse
Affiliation(s)
- Satoshi Watanabe
- Department of Chemical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Shotaro Hiraide
- Department of Chemical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Homare Arima
- Department of Chemical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Akiko Fukuta
- Department of Chemical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Miyuki Mori
- Department of Chemical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Hideki Tanaka
- Institute for Aqua Regeneration (ARG), Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Minoru T. Miyahara
- Department of Chemical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| |
Collapse
|
3
|
Rivera MP, Terrones GG, Lee TH, Smith ZP, Kulik HJ. Data-Driven Screening and Discovery of Metal-Organic Frameworks as C 2 Adsorbents from over 900 Experimental Isotherms. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64759-64773. [PMID: 39558819 DOI: 10.1021/acsami.4c14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
The separation of ethylene from ethane accounts for almost 100 million tons of CO2 emissions annually and 0.3% of global primary energy usage. Replacing current cryogenic distillation units with adsorption separation units, especially for the minor component of ethane, would enable significant efficiency gains. Metal-organic frameworks (MOFs) are well-suited for adsorption separation due to their high surface areas and tunable chemical properties. Exploring all possible MOFs is a daunting experimental challenge, motivating in silico screening with machine learning models. We present a database of 948 experimentally measured pure-component C2 isotherms from 192 MOFs gathered from the literature and use it to train machine learning models to predict MOF ethane and ethylene uptake across a range of temperature and pressure conditions. The models have high accuracy in interpolative tasks (mean absolute error ∼0.05 mmol/g) when trained on only 20% of available data. Performance on unseen structures was also reasonably accurate with a mean absolute error (MAE) ∼0.7 mmol/g. We apply the models to screen the CoRE MOF2019 ASR database and identify the most promising candidates. Several MOFs containing lanthanide metals were predicted to have high ethane selectivity, suggesting that this class of MOFs may merit further investigation. Feature importance analysis suggests that both optimizing MOF secondary building unit chemistry and the process conditions at which the sorbent will operate are critical for enabling ethane-selective separation. We synthesize a MOF predicted to exhibit high ethane selectivity and experimentally validate qualitative agreement with model predictions, highlighting the utility of both the data set and model in discovering unexplored C2 adsorbents.
Collapse
Affiliation(s)
- Matthew P Rivera
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gianmarco G Terrones
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tae Hoon Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Zachary P Smith
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Panagiotou N, Evangelou DA, Manos MJ, Plakatouras JC, Tasiopoulos AJ. Fine Tuning the Hydrophobicity of a New Three-Dimensional Cu 2+ MOF through Single Crystal Coordinating Ligand Exchange Transformations. Inorg Chem 2024; 63:3824-3834. [PMID: 38335458 PMCID: PMC10900299 DOI: 10.1021/acs.inorgchem.3c04060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
The synthesis, characterization, and single-crystal-to-single-crystal (SCSC) exchange reactions of a new 3D Cu2+ MOF based on 5-aminoisophthalic acid (H2AIP), [Cu6(μ3-ΟΗ)3(ΑΙΡ)4(HΑΙΡ)]n·6nDMF·nH2O - UCY-16·6nDMF·nH2O, are reported. It exhibits a 3D structure based on two [Cu4(μ3-OH)2]6+ butterfly-like secondary building units, differing in their peripheral ligation, bridged through HAIP-/AIP2- ligands. This compound displays the capability to exchange the coordinating ligand(s) and/or guest solvent molecules through SCSC reactions. Interestingly, heterogeneous reactions of single crystals of UCY-16·6nDMF·nH2O with primary alcohols resulted not only in the removal of the lattice DMF molecules but also in an unprecedented structural alteration that involved the complete or partial replacement of the monoatomic bridging μ3-OH- anion(s) of the [Cu4(μ3-OH)2]6+ butterfly structural core by various alkoxy groups. Similar crystal-to-crystal exchange reactions of UCY-16·6nDMF·nH2O with long-chain aliphatic alcohols (CxH2x+1OH, x = 8-10, 12, 14, and 16) led to analogues containing fatty alcohols. Notably, the exchanged products with the bulkier alcohols UCY-16/n-CxH2x+1OH·S' (x = 6-10, 12, 14, and 16) do not mix with H2O being quite stable in this solvent, in contrast to the pristine MOF, and exhibit a hydrophobic/superhydrophobic surface as confirmed from the investigation of their water contact angles and capability to remove hydrophobic pollutants from aqueous media.
Collapse
Affiliation(s)
- Nikos Panagiotou
- Department
of Chemistry, University of Cyprus, 1678 Nicosia, Cyprus
| | | | - Manolis J. Manos
- Department
of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | | | | |
Collapse
|
5
|
Wang SQ, Bon V, Darwish S, Wang SM, Yang QY, Xu Z, Kaskel S, Zaworotko MJ. Insight into the Gas-Induced Phase Transformations in a 2D Switching Coordination Network via Coincident Gas Sorption and In Situ PXRD. ACS MATERIALS LETTERS 2024; 6:666-673. [PMID: 38333599 PMCID: PMC10848331 DOI: 10.1021/acsmaterialslett.3c01520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
Switching coordination networks (CNs) that reversibly transform between narrow or closed pore (cp) and large pore (lp) phases, though fewer than their rigid counterparts, offer opportunities for sorption-related applications. However, their structural transformations and switching mechanisms remain underexplored at the molecular level. In this study, we conducted a systematic investigation into a 2D switching CN, [Ni(bpy)2(NCS)2]n, sql-1-Ni-NCS (1 = bpy = 4,4'-bipyridine), using coincident gas sorption and in situ powder X-ray diffraction (PXRD) under low-temperature conditions. Gas adsorption measurements revealed that C2H4 (169 K) and C2H6 (185 K) exhibited single-step type F-IVs sorption isotherms with sorption uptakes of around 180-185 cm3 g-1, equivalent to four sorbate molecules per formula unit. Furthermore, parallel in situ PXRD experiments provided insight into sorbate-dependent phase switching during the sorption process. Specifically, CO2 sorption induced single-step phase switching (path I) solely between cp and lp phases consistent with the observed single-step type F-IVs sorption isotherm. By contrast, intermediate pore (ip) phases emerged during C2H4 and C2H6 desorption as well as C3H6 adsorption, although they remained undetectable in the sorption isotherms. To our knowledge, such a cp-lp-ip-cp transformation (path II) induced by C2H4/6 and accompanied by single-step type F-IVs sorption isotherms represents a novel type of phase transition mechanism in switching CNs. By virtue of Rietveld refinements and molecular simulations, we elucidated that the phase transformations are governed by cooperative local and global structural changes involving NCS- ligand reorientation, bpy ligand twist and rotation, cavity edge (Ni-bpy-Ni) deformation, and interlayer expansion and sliding.
Collapse
Affiliation(s)
- Shi-Qiang Wang
- Institute
of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Republic of Singapore
| | - Volodymyr Bon
- Faculty
of Chemistry, Technische Universität
Dresden, Bergstrasse 66, Dresden 01062, Germany
| | - Shaza Darwish
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Shao-Min Wang
- School
of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Qing-Yuan Yang
- School
of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Zhengtao Xu
- Institute
of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Republic of Singapore
| | - Stefan Kaskel
- Faculty
of Chemistry, Technische Universität
Dresden, Bergstrasse 66, Dresden 01062, Germany
| | - Michael J. Zaworotko
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
6
|
Hao T, Li HZ, Wang F, Zhang J. Tetrahedral Imidazolate Frameworks with Auxiliary Ligands (TIF-Ax): Synthetic Strategies and Applications. Molecules 2023; 28:6031. [PMID: 37630285 PMCID: PMC10460009 DOI: 10.3390/molecules28166031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Zeolitic imidazolate frameworks (ZIFs) are an important subclass of metal-organic frameworks (MOFs). Recently, we reported a new kind of MOF, namely tetrahedral imidazolate frameworks with auxiliary ligands (TIF-Ax), by adding linear ligands (Hint) into the zinc-imidazolate system. Introducing linear ligands into the M2+-imidazolate system overcomes the limitation of imidazole derivatives. Thanks to the synergistic effect of two different types of ligands, a series of new TIF-Ax with interesting topologies and a special pore environment has been reported, and they have attracted extensive attention in gas adsorption, separation, catalysis, heavy metal ion capture, and so on. In this review, we give a comprehensive overview of TIF-Ax, including their synthesis methods, structural diversity, and multi-field applications. Finally, we also discuss the challenges and perspectives of the rational design and syntheses of new TIF-Ax from the aspects of their composition, solvent, and template. This review provides deep insight into TIF-Ax and a reference for scholars with backgrounds of porous materials, gas separation, and catalysis.
Collapse
Affiliation(s)
- Tong Hao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350025, China
| | - Hui-Zi Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Fei Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
7
|
Lv H, Ma C, Zhu Z, Li QH, Chen S, Wang F, Li S. A light-sensitive metal-organic framework composite encapsulated by ion exchange for photocatalytic organic reaction. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|