1
|
Kim N, Bae M, Cho E, Kim KS, Lee JH. Plasmonic Biosensors in Cancer-Associated miRNA Detection. BIOSENSORS 2025; 15:165. [PMID: 40136963 PMCID: PMC11940778 DOI: 10.3390/bios15030165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/27/2025]
Abstract
Cancer is one of the most lethal diseases and has distinct variants that affect over 60 organs in the human body. The necessity of advanced methodologies for the early diagnosis of cancer has grown over the past decades. Among various biomarkers, microRNAs (miRNAs) have emerged as highly specific and minimally invasive indicators for cancer detection, prognosis, and treatment monitoring. Their stability in biological fluids and their critical role in gene regulation make them valuable targets for diagnostic applications. Plasmonic biosensors have gained massive attention owing to their unique optical properties, such as surface plasmon resonance, making them promising tools for the sensitive and selective analysis of cancer-associated biomarkers. In contrast to previous reviews, this work offers a comprehensive overview of advancements from approximately the past five years, particularly in the detection of cancer-associated miRNAs. It emphasizes emerging plasmonic sensing strategies, integration with novel nanomaterials, and enhanced signal amplification techniques. By focusing on these recent innovations, this review provides new insights into the potential of plasmonic biosensors to improve cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Information Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea; (N.K.); (M.B.); (E.C.)
| | - Mingyu Bae
- Department of Information Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea; (N.K.); (M.B.); (E.C.)
| | - Euni Cho
- Department of Information Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea; (N.K.); (M.B.); (E.C.)
| | - Ki Su Kim
- School of Chemical Engineering, College of Engineering, Pusan National University, Busan 46241, Republic of Korea
- Department of Organic Material Science & Engineering, College of Engineering, Pusan National University, Busan 46241, Republic of Korea
- Institute of Advanced Organic Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Jin-Ho Lee
- Department of Information Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea; (N.K.); (M.B.); (E.C.)
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Research Institute of Convergence of Biomedical Science and Technology, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
2
|
Zhang L, Bai H, Zou J, Zhang C, Zhuang W, Hu J, Yao Y, Hu WW. Immuno-Rolling Circle Amplification (Immuno-RCA): Biosensing Strategies, Practical Applications, and Future Perspectives. Adv Healthc Mater 2024; 13:e2402337. [PMID: 39252654 DOI: 10.1002/adhm.202402337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/25/2024] [Indexed: 09/11/2024]
Abstract
In the rapidly evolving field of life sciences and biomedicine, detecting low-abundance biomolecules, and ultraweak biosignals presents significant challenges. This has spurred a rapid development of analytical techniques aiming for increased sensitivity and specificity. These advancements, including signal amplification strategies and the integration of biorecognition events, mark a transformative era in bioanalytical precision and accuracy. A prominent method among these innovations is immuno-rolling circle amplification (immuno-RCA) technology, which effectively combines immunoassays with signal amplification via RCA. This process starts when a targeted biomolecule, such as a protein or cell, binds to an immobilized antibody or probe on a substrate. The introduction of a circular DNA template triggers RCA, leading to exponential amplification and significantly enhanced signal intensity, thus the target molecule is detectable and quantifiable even at the single-molecule level. This review provides an overview of the biosensing strategy and extensive practical applications of immuno-RCA in detecting biomarkers. Furthermore, it scrutinizes the limitations inherent to these sensors and sets forth expectations for their future trajectory. This review serves as a valuable reference for advancing immuno-RCA in various domains, such as diagnostics, biomarker discovery, and molecular imaging.
Collapse
Affiliation(s)
- Limei Zhang
- Precision Medicine Translational Research Center (PMTRC), Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hao Bai
- Precision Medicine Translational Research Center (PMTRC), Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jie Zou
- Precision Medicine Translational Research Center (PMTRC), Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chuyan Zhang
- Precision Medicine Translational Research Center (PMTRC), Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Weihua Zhuang
- Precision Medicine Translational Research Center (PMTRC), Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jie Hu
- Precision Medicine Translational Research Center (PMTRC), Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yongchao Yao
- Precision Medicine Translational Research Center (PMTRC), Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wenchuang Walter Hu
- Precision Medicine Translational Research Center (PMTRC), Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
3
|
He K, Cheng Z, Zhang X, Qian Z, Chen J, Li B, Meng F, Yu S, Tang K, Wu YX. Activating Two-Photon Silica Nanoamplifier-Based CHA and FRET for Accurate Ratiometric Bioimaging of Intracellular MicroRNA. Anal Chem 2024; 96:16338-16345. [PMID: 39359231 DOI: 10.1021/acs.analchem.4c03630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
In situ visualization of microRNA (miRNA) in cancer cells and diseased tissues is essential for advancing our comprehension of the onset and progression of associated diseases. Two-photon (TP) imaging, as an imaging technology with high spatiotemporal resolution, deep tissue penetration, and accurate target quantification, has distinctive advantages over single-photon imaging and has attracted increasing attention. Extensive research has been conducted on two-photon dye-doped silica nanoparticles, which exhibit a large two-photon absorption (TPA) cross-section, high fluorescence quantum yield, and excellent biocompatibility. However, the low abundance of RNA in tumor cells leads to insufficient signal output. Based on functional nucleic acid, a catalyzed hairpin self-assembly (CHA) signal amplification strategy, which has simplicity, robustness, and nonenzymatic characteristics, can achieve the amplification of DNA or RNA signals. Here, a two-photon silica nanoamplifier (TP-SNA) utilizing TP dye-doped silica nanoparticles (SiNPs) and functional nucleic acid was constructed, employing triggering catalyzed hairpin self-assembly and fluorescence resonance energy transfer (FRET) for highly sensitive detection and precise TP imaging of endogenous miRNAs in tumor cells and tissues at varying depths. The TP-SNA demonstrated the capability to detect miR-203 with a detection limit of 33 pM. The maximum two-photon tissue penetration depth of the two-photon nanoamplifier was 210 μm. The two-photon nanoamplifier developed in this study makes full use of the advantages of accurate TP ratiometric bioimaging and the CHA signal amplification strategy, which shows good application value for future transformation into clinical diagnosis.
Collapse
Affiliation(s)
- Kangdi He
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Zhen Cheng
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xianmiao Zhang
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zhiling Qian
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jia Chen
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Bingqian Li
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Fayan Meng
- Chemistry & Physics Department, Frostburg State University, 101 Braddock Rd, Frostburg, Maryland 21532, United States
| | - Shengrong Yu
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Ningbo Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| | - Keqi Tang
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Ningbo Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| | - Yong-Xiang Wu
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Ningbo Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| |
Collapse
|
4
|
Schmidt K, Riedel T, de los Santos Pereira A, Lynn NS, Dorado Daza DF, Dostalek J. Sandwich Immuno-RCA Assay with Single Molecule Counting Readout: The Importance of Biointerface Design. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17109-17119. [PMID: 38530402 PMCID: PMC11009916 DOI: 10.1021/acsami.3c18304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
The analysis of low-abundance protein molecules in human serum is reported based on counting of the individual affinity-captured analyte on a solid sensor surface, yielding a readout format similar to digital assays. In this approach, a sandwich immunoassay with rolling circle amplification (RCA) is used for single molecule detection (SMD) through associating the target analyte with spatially distinct bright spots observed by fluorescence microscopy. The unspecific interaction of the target analyte and other immunoassay constituents with the sensor surface is of particular interest in this work, as it ultimately limits the performance of this assay. It is minimized by the design of the respective biointerface and thiol self-assembled monolayer with oligoethylene (OEG) head groups, and a poly[oligo(ethylene glycol) methacrylate] (pHOEGMA) antifouling polymer brush was used for the immobilization of the capture antibody (cAb) on the sensor surface. The assay relying on fluorescent postlabeling of long single-stranded DNA that are grafted from the detection antibody (dAb) by RCA was established with the help of combined surface plasmon resonance and surface plasmon-enhanced fluorescence monitoring of reaction kinetics. These techniques were employed for in situ measurements of conjugating of cAb to the sensor surface, tagging of short single-stranded DNA to dAb, affinity capture of the target analyte from the analyzed liquid sample, and the fluorescence readout of the RCA product. Through mitigation of adsorption of nontarget molecules on the sensor surface by tailoring of the antifouling biointerface, optimizing conjugation chemistry, and by implementing weak Coulombic repelling between dAb and the sensor surface, the limit of detection (LOD) of the assay was substantially improved. For the chosen interleukin-6 biomarker, SMD assay with LOD at a concentration of 4.3 fM was achieved for model (spiked) samples, and validation of the ability of detection of standard human serum samples is demonstrated.
Collapse
Affiliation(s)
- Katharina Schmidt
- Laboratory
for Life Sciences and Technology (LiST), Danube Private University, Viktor-Kaplan-Straße 2, 2700 Wiener, Neustadt, Austria
| | - Tomas Riedel
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Heyrovského
nám. 2, Prague 162
00, Czech Republic
| | - Andres de los Santos Pereira
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Heyrovského
nám. 2, Prague 162
00, Czech Republic
| | - N. Scott Lynn
- FZU-Institute
of Physics, Czech Academy of Sciences, Na Slovance 2, Prague 182 21, Czech Republic
| | - Diego Fernando Dorado Daza
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Heyrovského
nám. 2, Prague 162
00, Czech Republic
| | - Jakub Dostalek
- Laboratory
for Life Sciences and Technology (LiST), Danube Private University, Viktor-Kaplan-Straße 2, 2700 Wiener, Neustadt, Austria
- FZU-Institute
of Physics, Czech Academy of Sciences, Na Slovance 2, Prague 182 21, Czech Republic
| |
Collapse
|
5
|
El Saftawy E, Farag MF, Gebreil HH, Abdelfatah M, Aboulhoda BE, Alghamdi M, Albadawi EA, Abd Elkhalek MA. Malaria: biochemical, physiological, diagnostic, and therapeutic updates. PeerJ 2024; 12:e17084. [PMID: 38529311 PMCID: PMC10962339 DOI: 10.7717/peerj.17084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/19/2024] [Indexed: 03/27/2024] Open
Abstract
Background Malaria has been appraised as a significant vector-borne parasitic disease with grave morbidity and high-rate mortality. Several challenges have been confronting the efficient diagnosis and treatment of malaria. Method Google Scholar, PubMed, Web of Science, and the Egyptian Knowledge Bank (EKB) were all used to gather articles. Results Diverse biochemical and physiological indices can mirror complicated malaria e.g., hypoglycemia, dyslipidemia, elevated renal and hepatic functions in addition to the lower antioxidant capacity that does not only destroy the parasite but also induces endothelial damage. Multiple trials have been conducted to improve recent points of care in malaria involving biosensors, lap on-chip, and microdevices technology. Regarding recent therapeutic trials, chemical falcipain inhibitors and plant extracts with anti-plasmodial activities are presented. Moreover, antimalaria nano-medicine and the emergence of nanocarrier (either active or passive) in drug transportation are promising. The combination therapeutic trials e.g., amodiaquine + artemether + lumefantrine are presented to safely counterbalance the emerging drug resistance in addition to the Tafenoquine as a new anti-relapse therapy. Conclusion Recognizing the pathophysiology indices potentiate diagnosis of malaria. The new points of care can smartly manipulate the biochemical and hematological alterations for a more sensitive and specific diagnosis of malaria. Nano-medicine appeared promising. Chemical and plant extracts remain points of research.
Collapse
Affiliation(s)
- Enas El Saftawy
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Cairo, Giza, Egypt
- Department of Medical Parasitology, Armed Forces College of Medicine, Cairo, Egypt
| | - Mohamed F. Farag
- Department of Medical Physiology, Armed Forces College of Medicine, Cairo, Giza, Egypt
| | - Hossam H. Gebreil
- Department of Medical Biochemistry & Molecular Biology, Armed Forces College of Medicine, Cairo, Egypt
| | - Mohamed Abdelfatah
- Department of Medical Physiology, Armed Forces College of Medicine, Cairo, Giza, Egypt
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Giza, Egypt
| | - Mansour Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Emad A. Albadawi
- Department of Anatomy, College of Medicine, Taibah University, Madinah, Saudi Arabia
| | - Marwa Ali Abd Elkhalek
- Department of Medical Biochemistry & Molecular Biology, Armed Forces College of Medicine, Cairo, Egypt
- Medical Biochemistry & Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
6
|
D'Agata R, Bellassai N, Spoto G. Exploiting the design of surface plasmon resonance interfaces for better diagnostics: A perspective review. Talanta 2024; 266:125033. [PMID: 37562226 DOI: 10.1016/j.talanta.2023.125033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Surface Plasmon Resonance based-sensors are promising tools for precision diagnostics as they can provide tests useful for early and, whenever possible, non-invasive disease detection and monitoring. The design of novel, robust and effective interfaces enabling the sensing of a variety of molecular interactions in a highly selective and sensitive manner is a necessary step to obtain both accurate and reliable detection by SPR. This review covers the recent research efforts in this area, specifically emphasizing well-designed interfaces and applications in real-life samples. In particular, after a short introduction which identifies some of the critical challenges, the emerging strategies for the integration of the linker, the metal substrate and the recognition element on the sensing interface will be explored and discussed in three sections, as well as the opportunities for building SPR biosensors, easy to use, and with excellent sensitivities. Finally, a summary of some of the more promising and latest diagnostic applications will be provided, presenting a new window into the near-future perspectives.
Collapse
Affiliation(s)
- Roberta D'Agata
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, 95125, Catania, Italy; INBB, Istituto Nazionale di Biostrutture e Biosistemi, Viale Delle Medaglie D'Oro, 305, 00136, Roma, Italy.
| | - Noemi Bellassai
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, 95125, Catania, Italy; INBB, Istituto Nazionale di Biostrutture e Biosistemi, Viale Delle Medaglie D'Oro, 305, 00136, Roma, Italy
| | - Giuseppe Spoto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, 95125, Catania, Italy; INBB, Istituto Nazionale di Biostrutture e Biosistemi, Viale Delle Medaglie D'Oro, 305, 00136, Roma, Italy
| |
Collapse
|