1
|
Ma Y, Pan J, Rong H, Liu L, Zhang Y, Cao X, Zhang J, Liu T, Wang N, Yuan Y. Local Charge Density Enhancement Strategy in Nitrogen-rich Covalent Organic Framework for Boosted Iodine Removal From Water. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e00697. [PMID: 40391680 DOI: 10.1002/advs.202500697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/29/2025] [Indexed: 05/22/2025]
Abstract
The leakage of nuclear pollution highlights the critical importance of effectively separating radioactive pollutants. Radioactive iodine, a high-yield fission product of nuclear reactions, poses serious environmental and health risks. However, the lack of efficient adsorbents makes the management of aqueous radioactive iodine pollution a significant challenge. N-doped materials are among the most recognized adsorbents for iodine removal, but their weak binding affinity and limited number of iodine-binding N-sites hinder their practical application. Herein, a covalent organic framework (COFs) named phen-TPA is synthesized, featuring an increased number and optimized local chemical environment of iodine-binding N-sites. This material demonstrates record-breaking iodine removal kinetics, with a kinetic constant of 14.64 g g-1 min-1 for aqueous iodine (I2), and the highest-reported iodine adsorption capacity of 11.9 g g-1 for aqueous triiodide (I3 -). Large-scale flow-through adsorption experiments show that phen-TPA can remove 99.5% aqueous I2 and I3 - from high-salinity aqueous environments, highlighting its potential for practical applications.
Collapse
Affiliation(s)
- Yue Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| | - Jinjiao Pan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| | - Huazhen Rong
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| | - Lu Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| | - Yilei Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| | - Xuewen Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| | - Jiacheng Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| | - Tao Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| | - Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| |
Collapse
|
2
|
Ma Y, Pan J, Rong H, Zhang Y, Liu L, Guo Y, Ai J, Yuan Y, Wang N. Porous Aromatic Framework with Multifunctional Sites for Effective Recovery of Various Trace Iodine Species From Water. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500993. [PMID: 40047336 PMCID: PMC12061248 DOI: 10.1002/advs.202500993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/13/2025] [Indexed: 05/10/2025]
Abstract
Recovery of environmental iodine is of great significance for both recycling iodine resources and addressing iodine pollution. However, iodine is highly sensitive to environmental factors and exists in various chemical species, which complicates the recovery of trace iodine in aqueous systems. Here a porous aromatic framework (iPAF-TEPT) is presented with multifunctional adsorption sites for efficient recovery of various iodine species, including molecular iodine (I2), iodide (I- and I3 -). The material utilizes a synergistic strategy combining charge-transfer interactions and Coulomb interactions to effectively adsorb different iodine species. Thanks to its high density of accessible ion exchange sites for I⁻ and I3⁻, and nitrogen-rich sites for I2, iPAF-TEPT demonstrates an unprecedented adsorption capacity for various iodine forms. Notably, iPAF-TEPT achieves exceptional removal efficiency for trace iodine pollutants, even at concentrations as low as 100 ppb, making it the first promising single-framework material for highly efficient treatment of aqueous iodine contamination.
Collapse
Affiliation(s)
- Yue Ma
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Jinjiao Pan
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Huazhen Rong
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Yilei Zhang
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Lu Liu
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Yu Guo
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Jiayi Ai
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| |
Collapse
|
3
|
Zheng YX, Wu X, Yang WG, Li BX, Gao K, Zhou J, Liu Y, Yang D. Nitrogen-rich and core-sheath polyamide/polyethyleneimine@Zr-MOF for iodine adsorption and nerve agent simulant degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135713. [PMID: 39278035 DOI: 10.1016/j.jhazmat.2024.135713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/28/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024]
Abstract
Radioactive nuclides and highly toxic organophosphates are typical deadly threats. Materials with the function of radioactive substances adsorption and organophosphates degradation provide double protection. Herein, dual-functional polyamide (PA)/polyethyleneimine (PEI)@Zr-MOF fiber composite membranes, fabricated by in-situ solvothermal growth of Zr-MOF on PA/PEI electrospun fiber membranes, are designed for protection against two typical model compounds of iodine and dimethyl 4-nitrophenyl phosphate (DMNP). Benefiting from the unique core-sheath structure composed of inner nitrogen-rich fibers and outer porous Zr-MOF, the composite membranes rapidly enrich iodine through abundant active sites of the outer sheath and form complexes with the amine of inner PEI, exhibiting a highly competitive adsorption capacity of 609 mg g-1. Moreover, it can adsorb and degrade DMNP with the synergy of PEI component and Zr-MOF, achieving an 80 % removal of DMNP within 7 min without any additional co-catalyst. This work provides a feasible strategy to fabricate dual-functional materials that protect against radioactive and organophosphorus contaminants.
Collapse
Affiliation(s)
- Yu-Xuan Zheng
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuwen Wu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei-Guang Yang
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bai-Xue Li
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kejing Gao
- Petrochina Petrochemical Research Institute, Beijing 102206, China
| | - Jingsheng Zhou
- Petrochina Petrochemical Research Institute, Beijing 102206, China
| | - Yunfang Liu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongzhi Yang
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
4
|
Jing XZ, Li HR, Di Z, Liu QX, Li CP. Scavenging Radionuclide by Shapeable Porous Materials. Chempluschem 2024; 89:e202400364. [PMID: 38978154 DOI: 10.1002/cplu.202400364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Nuclear energy is a competitive and environmentally friendly low-carbon energy source. It is seen as an important avenue for satisfying energy demands, responding to the energy crisis, and mitigating global climate change. However, much attention has been paid to achieving the effective treatment of radionuclide ions produced in nuclear waste. Initially, advanced adsorbents were mainly available in powder form, which meant that additional purification processes were usually required for separation and recovery in industrial applications. Therefore, to meet the practical requirements of industrial applications, materials need to be molded and processed into forms such as beads, membranes, gels, and resins. Here, we summarize the fabrication of porous materials used for capturing typical radionuclide ions, including UO2 2+, TcO4 -, IO3 -, SeO3 2-, and SeO4 2-.
Collapse
Affiliation(s)
- Xue-Zhuo Jing
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Hai-Ruo Li
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Zhengyi Di
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Qing-Xiang Liu
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Cheng-Peng Li
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, P. R. China
| |
Collapse
|
5
|
Yu J, Song L, Han B, Hu J, Li Z, Mi J. Synthesis of a Novel Zwitterionic Hypercrosslinked Polymer for Highly Efficient Iodine Capture from Water. Polymers (Basel) 2024; 16:2846. [PMID: 39408556 PMCID: PMC11478924 DOI: 10.3390/polym16192846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Cationic porous organic polymers have a unique advantage in removing radioactive iodine from the aqueous phase because iodine molecules exist mainly in the form of iodine-containing anions. However, halogen anions will inevitably be released into water during the ion-exchange process. Herein, we reported a novel and easy-to-construct zwitterionic hypercrosslinked polymer (7AIn-PiP)-containing cationic pyridinium-type group, uncharged pyridine-type group, pyrrole-type group, and even an electron-rich phenyl group, which in synergy effectively removed 94.2% (456 nm) of I2 from saturated I2 aqueous solution within 30 min, surpassing many reported iodine adsorbents. Moreover, an I2 adsorption efficiency of ~95% can still be achieved after three cyclic evaluations, indicating a good recycling performance. More importantly, a unique dual 1,3-dipole was obtained and characterized by 1H/13C NMR, HRMS, and FTIR, correlating with the structure of 7AIn-PiP. In addition, the analysis of adsorption kinetics and the characterization of I2@7AIn-PiP indicate that the multiple binding sites simultaneously contribute to the high affinity towards iodine species by both physisorption and chemisorption. Furthermore, an interesting phenomenon of inducing the formation of HIO2 in unsaturated I2 aqueous solution was discovered and explained. Overall, this work is of great significance for both material and radiation protection science.
Collapse
Affiliation(s)
- Jingwen Yu
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (B.H.); (J.H.)
- Key Laboratory of Coal Science and Technology, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
- Lu’an Chemical Group Co., Ltd., Changzhi 046204, China
| | - Luna Song
- Shanxi Institute of Energy, Jinzhong 030600, China;
| | - Bingying Han
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (B.H.); (J.H.)
- Key Laboratory of Coal Science and Technology, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jiangliang Hu
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (B.H.); (J.H.)
- Key Laboratory of Coal Science and Technology, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhong Li
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (B.H.); (J.H.)
- Key Laboratory of Coal Science and Technology, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jie Mi
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (B.H.); (J.H.)
- Key Laboratory of Coal Science and Technology, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
6
|
Li WZ, Guo FY, Li J, Zhang XS, Liu Y, Luan J. Fabrication of bimetallic MOF-74 derived materials for high-efficiency adsorption of iodine. Dalton Trans 2024. [PMID: 39072426 DOI: 10.1039/d4dt01554a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Owing to their high porosity, open metal sites, and huge surface area, metal-organic framework (MOF) materials are commonly employed in iodine adsorption processes. Bimetallic MOFs have drawn a lot of attention since mono-metal MOFs have been unable to keep up with the demand. Bimetallic MOF materials still have drawbacks, including limited adsorption capacity, extended adsorption time, poor stability, and poor selectivity, despite their positive performance in radioactive iodine capture. It has been therefore difficult to develop adsorbents with quick iodine adsorption rates and high iodine adsorption efficiency. This study investigated the adsorption properties of a series of bimetallic MOF-74 materials (Mn-Co-MOF-74, Mn-Zn-MOF-74, and Mn-Ni-MOF-74) for radioactive iodine, as well as their design and synthesis utilizing the reflux approach. It was discovered that the adsorption performance of Mn-Ni-MOF-74 for radioiodine was superior to that of the other two bimetallic MOF-74 materials. Using the bimetallic Mn-Ni-MOF-74 as a precursor, a variety of bimetallic MOF-74 derived carbon compounds (Mn-Ni-CX) were prepared by high-temperature pyrolysis. Simultaneously, the structure of the material and the iodine adsorption characteristics have been thoroughly studied.
Collapse
Affiliation(s)
- Wen-Ze Li
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Fu-Yu Guo
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Jing Li
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Xiao-Sa Zhang
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Yu Liu
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Jian Luan
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| |
Collapse
|
7
|
Zhang L, Wen X, Ming Q, Luo X, He T, Chen T, Jiang M, Wang M, Ma L. One-Step Prepared Multifunctional Polyacrylonitrile/MIL-100(Fe) Membrane with High-Density Porous Fibers for Efficient Dye/Oil Wastewater Remediation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6550-6561. [PMID: 38483322 DOI: 10.1021/acs.langmuir.4c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
With environmental pollution becoming more serious, developing efficient treatment technologies for all kinds of organic wastewater has become the focus of current research. In this work, the coaxial electrospinning technology was used to one-step fabricate a porous and underwater superoleophobic polyacrylonitrile nanofibrous membrane with an Fe-based metal-organic framework (MIL-100(Fe)). Benefiting from the synergistic effect of two jets, the nanofibers are smaller and denser, which prompt the exposure of more nanomaterial additives (MIL-100(Fe)). The BET surface area increased to 202.888 m2/g, and the membranes demonstrated outstanding underwater superoleophobicity. Moreover, compared with traditional blended matrix membranes by the single-axis method, separation of the modifier and membrane matrix material by coaxial methods also maintained excellent mechanical properties, which enhanced Young's modulus 3.4 times (∼1.34 MPa). As a result, facing soluble dyes, the porous C-PAN/MIL-100(Fe) membrane can demonstrate outstanding and fast adsorptive property (the Qm of MB and CR reached 44.71 and 88.74 mg g-1, respectively). For oily emulsion, the hydrophilic and oleophobic nanofibrous reticular surface provided excellent separation performance (flux: 1124.0-1549.3 L m-2 h-1, R > 98%). Moreover, the porous and underwater superoleophobic C-PAN/MIL-100(Fe)-0.5 membrane can synchronously purify the dye/oil mixture emulsions by one-step filtration. Based on the above performance, we believe that the modified nanofibrous membrane prepared by one-step coaxial electrospinning technology can promote more studies of the development of membrane preparation technology in the field of oily wastewater treatment.
Collapse
Affiliation(s)
- Liyun Zhang
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
| | - Xin Wen
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
| | - Qingxia Ming
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
| | - Xue Luo
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
| | - Tianfeng He
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
| | - Tian Chen
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
| | - Minghang Jiang
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
| | - Mengjun Wang
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
| | - Lan Ma
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, 8 Xindu Avenue, Chengdu, Sichuan 610500, P. R. China
| |
Collapse
|
8
|
Wu Q, Jiang QQ, Li YJ, Wang YA, Wang X, Liang RP, Qiu JD. σ-Hole Effect-Induced Electroluminescence of Halogen Cocrystals for Determination of Iodide in Seawater. Anal Chem 2024; 96:4623-4631. [PMID: 38456770 DOI: 10.1021/acs.analchem.3c05632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Developing new electrochemiluminescence (ECL) luminators with high stability, wide applicability, and strong designability is of great strategic significance to promote the ECL field to the frontier. Here, driven by the I···N bond, 1,3,5-trifluoro-2,4,6-triiodobenzene (TFTI) and 2,4,6-trimethyl-1,3,5-triazine (TMT) self-assembled into a novel halogen cocrystal (TFTI-TMT) through slow solution volatilization. Significant difference of charge density existed between the N atoms on TMT and the σ-hole of the I atoms on TFTI. Upon the induction of σ-hole effect, high-speed and spontaneous charge transferring from TMT to the σ-hole of TFTI occurred, stimulating exciting ECL signals. Besides, the σ-hole of the I atoms could capture iodine ions specifically, which blocked the original charge transfer from the N atoms to the σ-hole, causing the ECL signal of TFTI-TMT to undergo a quenching rate as high as 92.9%. Excitingly, the ECL sensing of TFTI-TMT toward I- possessed a wide linear range (10-5000 nM) and ultralow detection limit (3 nM) in a real water sample. The halogen cocrystal strategy makes σ-hole a remarkable new viewpoint of ECL luminator design and enables ECL analysis technology to contribute to addressing the environmental and health threats posed by iodide pollution.
Collapse
Affiliation(s)
- Qiong Wu
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Qiao-Qiao Jiang
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ya-Jie Li
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ying-Ao Wang
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xun Wang
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Jian-Ding Qiu
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
9
|
Zhang L, Luo YT, Fan JQ, Xiao SJ, Zheng QQ, Liu XL, Tan QG, Sun C, Shi Q, Liang RP, Qiu JD. Efficient capture of iodine in steam and water media by hydrogen bond-driven charge transfer complexes. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133488. [PMID: 38219593 DOI: 10.1016/j.jhazmat.2024.133488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Untreated radioactive iodine (129I and 131I) released from nuclear power plants poses a significant threat to humans and the environment, so the development of materials to capture iodine from water media and steam is critical. Here, we report a charge transfer complex (TCNQ-MA CTC) with abundant nitrogen atoms and π-conjugated system for adsorption of I2 vapor and I3- from aqueous solutions. Due to the synergistic binding mechanism of benzene/triazine rings and N-containing groups with iodine, special I-π and charge transfer interaction can be formed between the guest and the host, and thus efficient removal of I2 and I3- can be realized by TCNQ-MA CTC with the adsorption capacity up to 2.42 g/g and 800 mg/g, respectively. TCNQ-MA CTC can capture 92% of I3- within 2.5 min, showing extremely fast kinetics, excellent selectivity and high affinity (Kd = 5.68 × 106 mL/g). Finally, the TCNQ-MA CTC was successfully applied in the removal of iodine from seawater with the efficiency of 93.71%. This work provides new insights in the construction of charge transfer complexes and lays the foundation for its environmental applications.
Collapse
Affiliation(s)
- Li Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Yu-Ting Luo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Jia-Qi Fan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Sai-Jin Xiao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology (ECUT), Nanchang 330013, China
| | - Qiong-Qing Zheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xiao-Lin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Quan-Gen Tan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Chen Sun
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Qiang Shi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Jian-Ding Qiu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China; State Key Laboratory of Nuclear Resources and Environment, East China University of Technology (ECUT), Nanchang 330013, China.
| |
Collapse
|
10
|
Wang T, Liu X, Yang J, Tang J, Zhai B, Luo Y, Liu Z, Fang Y. Efficient Removal of Iodine from Water by a Calix[4]pyrrole-Based Nanofilm. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4489-4495. [PMID: 38369881 DOI: 10.1021/acs.langmuir.3c03961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The efficient removal of radioactive iodine from an aqueous solution is largely dependent on the adsorbent materials employed. In this work, we report a calix[4]pyrrole-based nanofilm and its application for the rapid removal of iodine from water. The nanofilm was synthesized through a confined dynamic condensation of tetra hydrazide calix[4]pyrrole with 1,3,5-tri-(4-formylphenyl) aldehyde at the air/dimethyl sulfoxide (DMSO) interface. The thickness of the obtained nanofilm is ∼35 nm, enabling fast mass transfer and a high ratio of accessible binding sites for iodine. The pseudo-second-order rate constant of the nanofilm for iodine is ∼0.061 g g-1 min-1, 3 orders of magnitude higher than most reported adsorbent materials. Flow-through nanofiltration tests demonstrated that the nanofilm has an adsorption capacity of 1.48 g g-1, a high removal efficiency, and good reusability. The mechanism study revealed that the moieties of Schiff base, pyrrole, and aromatic rings play a key role for binding iodine. We believe this work provides not only a new strategy for the efficient removal of radioactive iodine from water but also new ideas for designing efficient iodine adsorbents.
Collapse
Affiliation(s)
- Tingyi Wang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Xiangquan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Jinglun Yang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Jiaqi Tang
- Xi'an Rare Matel Materials Institute Co. Ltd, Xi'an 710016, P. R. China
| | - Binbin Zhai
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yan Luo
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Zhongshan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
11
|
Tao Q, Zhang X, Jing L, Sun L, Dang P. Construction of Ketoenamine-Based Covalent Organic Frameworks with Electron-Rich Sites for Efficient and Rapid Removal of Iodine from Solution. Molecules 2023; 28:8151. [PMID: 38138639 PMCID: PMC10745408 DOI: 10.3390/molecules28248151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Porous covalent organic frameworks (COFs) have been widely used for the efficient removal of iodine from solution due to their abundance of electron-rich sites. In this study, two kinds of ketoenamine-based COFs, TpBD-(OMe)2 and TpBD-Me2, are successfully synthesized via Schiff base reaction under solvothermal conditions using 1, 3, 5-triformylphoroglucinol as aldehyde monomer, o-tolidine and o-dianisidine as amino monomers. The ability of TpBD-(OMe)2 and TpBD-Me2 to adsorb iodine in cyclohexane or aqueous solutions has been quantitatively analyzed and interpreted in terms of adsorption sites. TpBD-Me2 possesses two adsorption sites, -NH- and -C=O, and exhibits an adsorption capacity of 681.67 mg/g in cyclohexane, with an initial adsorption rate of 0.6 g/mol/min with respect to COF unit cell. The adsorption capacity of TpBD-(OMe)2 can be as high as 728.77 mg/g, and the initial adsorption rate of TpBD-(OMe)2 can reach 1.2 g/mol/min in the presence of oxygen atoms between the methyl group and the benzene ring. Compared with TpBD-Me2, the higher adsorption capacity and adsorption rate of TpBD-(OMe)2 towards iodine are not only reflected in organic solvents, but also in aqueous solutions. It is proven through X-ray photoelectron spectroscopy and Raman spectroscopy that iodine exists in the form of I2, I3-, and I5- within TpBD-(OMe)2 and TpBD-Me2 after adsorption. This work not only expands the application of COFs in the field of iodine adsorption, but also provides research ideas and important an experimental basis for the optimization of iodine adsorption sites.
Collapse
Affiliation(s)
- Qi Tao
- College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China
| | - Xiao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Liping Jing
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Lu Sun
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Peipei Dang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
12
|
Wang C, Yao H, Cai Z, Han S, Shi K, Wu Z, Ma S. [Sn 2S 6] 4- Anion-Intercalated Layered Double Hydroxides for Highly Efficient Capture of Iodine. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37906218 DOI: 10.1021/acsami.3c11367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The development of low-cost and high-efficiency iodine sorbents is of great significance for the control of nuclear pollution. In this work, we intercalate the tin sulfide cluster of [Sn2S6]4- to Mg/Al-type layered double hydroxides to obtain Sn2S6-LDH, which exhibits highly efficient capture performance of iodine vapor and iodine in solutions. The dispersion effect of the positively charged LDH layers contributes to the adequate exposure of [Sn2S6]4- anions, providing plentiful adsorption sites. For iodine vapor, Sn2S6-LDH showed an extremely large iodine capture capacity of 2954 mg/g with a large contribution from physisorption. For iodine in solutions, a significantly large sorption capacity of 1308 mg/g was achieved. During iodine capture, I2 molecules were reduced to I- ions (by S2- in [Sn2S6]4-), which then reacted with Sn4+ to form SnI4, where the molar amount of captured iodine is 4-fold that of Sn. Besides, the as-reduced I- combined with I2 again to generate [I3]-, which then entered the LDH interlayers to maintain electric neutrality. While reducing iodine, S2- itself in [Sn2S6]4- was oxidized to S8, which further combined with SnI4 to form a novel compound of SnI4(S8)2. The excellent iodine capture capability endows Sn2S6-LDH with a promising application in trapping radioactive iodine.
Collapse
Affiliation(s)
- Chaonan Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Huiqin Yao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Zidan Cai
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Senkai Han
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Keren Shi
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Zhenglong Wu
- Analytical and Testing Center, Beijing Normal University, Beijing 100875, China
| | - Shulan Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
13
|
Niu P, Shi C, Jiao J, Xie W, Qiu H, Yang Z, Jiang J, Wang L. Synthesis of Tröger's base-based [3]arenes for efficient iodine adsorption. Chem Commun (Camb) 2023; 59:10960-10963. [PMID: 37608715 DOI: 10.1039/d3cc02804f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Enantiomers of Tröger's base-based [3]arenes R6N-E[3] and S6N-E[3] were synthesized successfully as two optically pure Tröger's base-based macrocycles in which three Tröger's base subunits were incorporated. Among these Tröger's base-based[3]arenes, M[3] showed high absorption of iodine up to 4.02 g g-1 in vapor.
Collapse
Affiliation(s)
- Pengbo Niu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Conghao Shi
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Jianmin Jiao
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Wang Xie
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Heng Qiu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Zhen Yang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Juli Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
- Ma'anshan High-Tech Research Institute of Nanjing University, Ma'anshan, 238200, China.
| | - Leyong Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
14
|
Tong Y, Guan B, Sun Z, Dong X, Chen Y, Li Y, Jiang Y, Li J. Ratiometric fluorescent detection of exosomal piRNA-823 based on Au NCs/UiO-66-NH 2 and target-triggered rolling circle amplification. Talanta 2023; 257:124307. [PMID: 36764170 DOI: 10.1016/j.talanta.2023.124307] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
piR-823 is a newly discovered colorectal cancer marker with high diagnostic efficacy. However, the current quantification methods have complicated operations and high cost, which restrict its clinical application. Herein, a metal-organic framework (MOF) with a UiO-66 prototype structure which supports gold nanoclusters (Au NCs), Au NCs/UiO-66-NH2, were prepared as a model nanobiosensing platform for ratiometric detection of exosomal piR-823. The rolling circle amplification process provides high sensitivity and the ratiometric detection process ensures good accuracy of the sensor. Such biosensor showed a wide linear range of 0.04-4 pM, and a low detection limit of 10.2 fM towards piR-823. In addition, piR-823 can be used as an effective supplement to carcinoembryonic antigen (CEA) in clinical diagnosis of colorectal cancer. This study not only provides a potentially valuable ratio fluorescence platform involving enzyme catalytic reaction, but also offers a design blueprint for further expansion of nanotechnology in the diverse biological analysis.
Collapse
Affiliation(s)
- Yao Tong
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Bingxin Guan
- Department of Pathology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Zhiwei Sun
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, Shandong, China
| | - Xiangjun Dong
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Yuqing Chen
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Yanru Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, Shandong, China.
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
15
|
Yu G, Liu Y, Yang X, Li Y, Li Y, Zhang Y, He C. A robust sp2 carbon-conjugated COF for efficient iodine uptake. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|