1
|
Niu Y, Shi Q, Peng T, Cao X, Lv Y. Research Progress on the Synthesis of Nanostructured Photocatalysts and Their Environmental Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:681. [PMID: 40358298 PMCID: PMC12073334 DOI: 10.3390/nano15090681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025]
Abstract
Due to their unique photocatalytic properties, nanostructured photocatalysts have shown broad prospects for application in environmental treatment. In recent years, researchers have significantly enhanced the photocatalytic charge separation efficiency and photocatalytic stability of photocatalysts by regulating semiconductor energy band structures, optimizing interface and surface properties, constructing heterogeneous structures, and introducing noble metal doping. This review systematically summarizes the basic principles, synthesis methods, and modification strategies of nanostructured photocatalysts and focuses on recent research advances in their environmental applications, such as water pollution control, air purification, and carbon dioxide reduction. Meanwhile, this review analyzes current challenges in the field, such as low quantum efficiency, insufficient stability, and limited industrialization, and outlines future development directions, including smart catalytic technology, fabrication of multifunctional composites, and large-scale synthesis, thereby providing a reference for research and application.
Collapse
Affiliation(s)
- Yanan Niu
- College of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China
- School of Art and Design, Qiqihar University, Qiqihar 161006, China
| | - Qi Shi
- College of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China
| | - Tai Peng
- College of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China
| | - Xi Cao
- School of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuguang Lv
- College of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| |
Collapse
|
2
|
Pelicano CM, Żółtowska S, Antonietti M. A Mind Map to Address the Next Generation of Artificial Photosynthesis Experiments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501385. [PMID: 40177981 DOI: 10.1002/smll.202501385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/25/2025] [Indexed: 04/05/2025]
Abstract
Artificial photosynthesis (APS) is using light for uphill chemical reactions that converts light energy into chemical energy. It follows the example of natural photosynthesis, but offers a broader choice of materials and components, which can enhance its performance it terms of application conditions, stability, efficiency, and uphill reactions to be carried out. This work presents here first the status of the field, just to focus afterward on the current problems seen at the forefront of the field, as well as discussing some general misunderstandings, which are often repeated in the primary literature. Finally, this perspective article is daring to define some grand challenges, which have to be tackled for the translation of APS into society.
Collapse
Affiliation(s)
- Christian Mark Pelicano
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, MPI Research Campus Golm, D-14424, Potsdam-Golm, Germany
| | - Sonia Żółtowska
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, MPI Research Campus Golm, D-14424, Potsdam-Golm, Germany
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, MPI Research Campus Golm, D-14424, Potsdam-Golm, Germany
| |
Collapse
|
3
|
Hu W, Li A, Li H, Wang Y, Fan Z, Deng Q, Wang G, Xia Y, Hou W. Metal Single Atom-Hydroxyl Incorporation in Poly(heptazine imide) to Create Active Sites for Photocatalytic Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408436. [PMID: 39530660 DOI: 10.1002/smll.202408436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Poly(heptazine imide) (PHI) salts are extensively researched crystalline carbon nitride photocatalysts, but their photocatalytic water oxidation (PWO) performance is scarcely researched because of the difficulty in creating efficient active sites. Interference of metal ion (e.g., Na+ and K+) loss from the PHI salts in their PWO research has hardly been considered. Herein, metal single atom─OH (e.g., Co─OH) groups are incorporated into PHI to create efficient PWO active sites, via simple ion metathesis, hydrolysis, and deprotonation. The Co─OH modified PHI exhibits 9.3-fold higher PWO (oxygen evolution) activity than PHI, with an external quantum yield reaching 0.44% even at 600 nm. Excluding interference of the metal ion loss, the function of the Co─OH incorporation is evidenced mainly to facilitate the oxygen evolution reaction, as well as to promote photogenerated charge separation and raise visible light absorption, with the role of the OH especially revealed. Moreover, it is discovered that Na+ loss from sodium PHI will decrease its PWO activity, protonation of PHI has a detrimental effect on its PWO performance, and some other metal single atom─OH incorporation in PHI can also enhance its PWO activity. Overall, this work provides a general way to create PWO active sites in PHI.
Collapse
Affiliation(s)
- Wenxuan Hu
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Aifeng Li
- Institute of Pharmaceutical Research, Qilu Pharmaceutical Co., Ltd, Jinan, Shandong, 250104, China
| | - Haiping Li
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Yu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Zhenke Fan
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Quanhua Deng
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Guoan Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Yuguo Xia
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Wanguo Hou
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| |
Collapse
|
4
|
Xu S, Yang Z, Zhang L, Zhang X, Zeng Z, Wang W, Liang Y, Yuan L, Han C. From one to two: in situ construction of C 3N 5-poly(triazine imide) heterojunction for enhanced O 2 activation. Chem Commun (Camb) 2024; 60:14802-14805. [PMID: 39584428 DOI: 10.1039/d4cc05077k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
A novel C3N5-poly(triazine imide) (PTI) heterojunction was designed and constructed using a thermal polymerization process, and featured an intimate S-scheme interface coupling and a particularly good performance for H2O2 production. This work provides a new perspective for constructing metal-free C3N5-based heterojunctions to be used for selective molecular oxygen activation.
Collapse
Affiliation(s)
- Shiling Xu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China.
| | - Ziheng Yang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China.
| | - Laiqing Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China.
| | - Xiaorui Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China.
| | - Zikang Zeng
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China.
| | - Wenxuan Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China.
| | - Yujun Liang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China.
| | - Lan Yuan
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Chuang Han
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
5
|
Jing L, Li Z, Chen Z, Li R, Hu J. Engineering Polyheptazine and Polytriazine Imides for Photocatalysis. Angew Chem Int Ed Engl 2024; 63:e202406398. [PMID: 39190831 PMCID: PMC11586708 DOI: 10.1002/anie.202406398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
As organic semiconductor materials gain increasing prominence in the realm of photocatalysis, two carbon-nitrogen materials, poly (heptazine imide) (PHI) and poly (triazine imide) (PTI), have garnered extensive attention and applications owing to their unique structure properties. This review elaborates on the distinctive physical and chemical features of PHI and PTI, emphasizing their formation mechanisms and the ensuing properties. Furthermore, it elucidates the intricate correlation between the energy band structures and various photocatalytic reactions. Additionally, the review outlines the primary synthetic strategies for constructing PHI and PTI, along with characterization techniques for their identification. It also summarizes the primary strategies for enhancing the photocatalytic performance of PHI and PTI, whose advantages in various photocatalytic applications are discussed. Finally, it highlights the promising prospects and challenges of PHI and PTI as photocatalysts.
Collapse
Affiliation(s)
- Liquan Jing
- Department of Chemical and Petroleum EngineeringUniversity of Calgary2500 University DriveNWCalgaryAlbertaT2 N1 N4Canada
| | - Zheng Li
- Department of Chemical and Petroleum EngineeringUniversity of Calgary2500 University DriveNWCalgaryAlbertaT2 N1 N4Canada
| | - Zhangxin Chen
- Department of Chemical and Petroleum EngineeringUniversity of Calgary2500 University DriveNWCalgaryAlbertaT2 N1 N4Canada
- Eastern Institute for Advanced StudyNingboZhejiang315200China
| | - Rengui Li
- State Key Laboratory of CatalysisDalian National Laboratory for Clean EnergyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Jinguang Hu
- Department of Chemical and Petroleum EngineeringUniversity of Calgary2500 University DriveNWCalgaryAlbertaT2 N1 N4Canada
| |
Collapse
|
6
|
Tong H, Odutola J, Song J, Peng L, Tkachenko N, Antonietti M, Pelicano CM. Boosting the Quantum Efficiency of Ionic Carbon Nitrides in Photocatalytic H 2O 2 Evolution via Controllable n → π* Electronic Transition Activation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412753. [PMID: 39420669 PMCID: PMC11619226 DOI: 10.1002/adma.202412753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Hydrogen peroxide (H2O2) is a crucial chemical used in numerous industrial applications, yet its manufacturing relies on the energy-demanding anthraquinone process. Solar-driven synthesis of H2O2 is gaining traction as a promising research area, providing a sustainable method for its production. Herein, a controllable activation of n → π* electronic transition is presented to boost the photocatalytic H2O2 evolution in ionic carbon nitrides. This enhancement is achieved through the simultaneous introduction of structural distortions and defect sites (─C ≡ N groups and N vacancies) into the KPHI framework. The optimal catalyst (2%Ox-KPHI) reached an apparent quantum yield of 41% at 410 nm without the need for any cocatalysts, outperforming most previously reported carbon nitride-based photocatalysts. Extensive experimental characterizations and theoretical calculations confirm that a corrugated configuration and the presence of defects significantly broaden the light absorption profile, improve carrier separation and migration, promote O2 adsorption, and lower the energy barriers for H2O2 desorption. Transient absorption spectroscopy indicates that the enhanced photocatalytic performance of 2%Ox-KPHI is largely attributed to the preferential migration of electrons at defect sites over extended timescales, following the diffusion of geminate carriers across the PHI sheets.
Collapse
Affiliation(s)
- Haijian Tong
- Department of Colloid ChemistryMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Jokotadeola Odutola
- Chemistry and Advanced MaterialsFaculty of Engineering and Natural SciencesTampere UniversityTampere33101Finland
| | - Junsheng Song
- Department of Colloid ChemistryMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Lu Peng
- Department of Colloid ChemistryMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Nikolai Tkachenko
- Chemistry and Advanced MaterialsFaculty of Engineering and Natural SciencesTampere UniversityTampere33101Finland
| | - Markus Antonietti
- Department of Colloid ChemistryMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Christian Mark Pelicano
- Department of Colloid ChemistryMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| |
Collapse
|
7
|
Seo G, Hayakawa R, Wakayama Y, Ohnuki R, Yoshioka S, Kanai K. Mechanism of charge accumulation in potassium poly(heptazine imide). Phys Chem Chem Phys 2024. [PMID: 39037326 DOI: 10.1039/d4cp02012j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Dark photocatalysis is the ability of a photocatalyst to accumulate photocarriers during light irradiation and consume them for redox reactions under dark conditions. This phenomenon of photocatalysts storing photocarriers is known as charge accumulation. Dark photocatalysts can mitigate fluctuations in photocatalytic reaction efficiency in response to fluctuating solar irradiation. Potassium poly(heptazine imide) (K-PHI) has attracted considerable attention due to its high photocatalytic efficiency and ability to undergo dark photocatalysis. However, the detailed mechanism of charge accumulation in K-PHI remains unclear because photochromism, potassium ion desorption, and charge accumulation occur simultaneously triggered by light irradiation, limiting the comprehensive understanding of this mechanism. To elucidate the charge accumulation mechanism in K-PHI, highly oriented K-PHI thin films were prepared. Then, their fundamental physical properties and optical response of their electrical properties were investigated. We succeeded in separately observing photochromism, potassium ion desorption, and charge accumulation induced by light irradiation on K-PHI and proposed a comprehensive model to explain these phenomena. This study not only provides insights into the unique physical phenomena exhibited by K-PHI but also contributes to the development of solar energy-storage materials in the future.
Collapse
Affiliation(s)
- Goichiro Seo
- Department of Physics and Astronomy, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Ryoma Hayakawa
- Research Center for Materials Nano architectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yutaka Wakayama
- Research Center for Materials Nano architectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Ryosuke Ohnuki
- Department of Physics and Astronomy, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Shinya Yoshioka
- Department of Physics and Astronomy, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Kaname Kanai
- Department of Physics and Astronomy, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
8
|
Pelicano CM, Antonietti M. Metal Poly(heptazine imides) as Multifunctional Photocatalysts for Solar Fuel Production. Angew Chem Int Ed Engl 2024; 63:e202406290. [PMID: 38687031 DOI: 10.1002/anie.202406290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
Solar-driven photocatalysis employing particulate semiconductors represents a promising approach for sustainable production of valuable chemical feedstock. Metal poly(heptazine imide) (MPHI), a novel 2D ionic carbon nitride, has been recognized as an emerging photocatalyst with distinctive properties. In this minireview, we first delineate the forefront innovations of MPHI photocatalysts, spanning from synthetic strategies and solving structures to the exploration of novel properties. We place special emphasis on the structural design principles aimed at developing high-performance MPHI systems toward photocatalytic solar fuel production such as H2 evolution, H2O oxidation, H2O2 production and CO2 reduction. Finally, we discuss crucial insights and challenges in leveraging highly active MPHIs for efficient solar-to-chemical energy conversion.
Collapse
Affiliation(s)
- Christian Mark Pelicano
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Potsdam, 14476, Germany
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Potsdam, 14476, Germany
| |
Collapse
|
9
|
Diab GAA, da Silva MAR, Rocha GFSR, Noleto LFG, Rogolino A, de Mesquita JP, Jiménez‐Calvo P, Teixeira IF. A Solar to Chemical Strategy: Green Hydrogen as a Means, Not an End. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300185. [PMID: 38868607 PMCID: PMC11165522 DOI: 10.1002/gch2.202300185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/24/2023] [Indexed: 06/14/2024]
Abstract
Green hydrogen is the key to the chemical industry achieving net zero emissions. The chemical industry is responsible for almost 2% of all CO2 emissions, with half of it coming from the production of simple commodity chemicals, such as NH3, H2O2, methanol, and aniline. Despite electrolysis driven by renewable power sources emerging as the most promising way to supply all the green hydrogen required in the production chain of these chemicals, in this review, it is worth noting that the photocatalytic route may be underestimated and can hold a bright future for this topic. In fact, the production of H2 by photocatalysis still faces important challenges in terms of activity, engineering, and economic feasibility. However, photocatalytic systems can be tailored to directly convert sunlight and water (or other renewable proton sources) directly into chemicals, enabling a solar-to-chemical strategy. Here, a series of recent examples are presented, demonstrating that photocatalysis can be successfully employed to produce the most important commodity chemicals, especially on NH3, H2O2, and chemicals produced by reduction reactions. The replacement of fossil-derived H2 in the synthesis of these chemicals can be disruptive, essentially safeguarding the transition of the chemical industry to a low-carbon economy.
Collapse
Affiliation(s)
- Gabriel A. A. Diab
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
| | - Marcos A. R. da Silva
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
| | - Guilherme F. S. R. Rocha
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
| | - Luis F. G. Noleto
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
| | - Andrea Rogolino
- Cavendish LaboratoryUniversity of CambridgeCambridgeCB3 0HEUK
| | - João P. de Mesquita
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
- Departamento de QuímicaUniversidade Federal dos Vales Jequitinhonha e MucuriRodovia MGT 367 – Km 583, n° 5000, Alto da JacubaDiamantinaMG39100Brazil
| | - Pablo Jiménez‐Calvo
- Department for Materials SciencesFriedrich‐Alexander‐Universität Erlangen‐NürnbergMartensstrasse 7D‐91058ErlangenGermany
- Chemistry of Thin Film MaterialsFriedrich‐Alexander‐Universität Erlangen‐NürnbergIZNF, Cauerstraße 3D‐91058ErlangenGermany
| | - Ivo F. Teixeira
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
| |
Collapse
|
10
|
Zhu H, Zhao J, Duan L, Zhao G, Yu Z, Li J, Sun H, Meng Q. Low-Temperature Synthesis of Cyano-Rich Modified Surface-Alkalinized Heterojunctions with Directional Charge Transfer for Photocatalytic In Situ Generation and Consumption of Peroxides. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6008-6024. [PMID: 38282284 DOI: 10.1021/acsami.3c18293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The synthesis of low-temperature poly(heptazine imide) (PHI) presents a significant challenge. In this context, we have developed a novel low-temperature synthesis strategy for PHI in this work. This strategy involves the introduction of Na+ ions, which etch and disrupt the conjugated structure of carbon nitride (CN) during assisted thermal condensation. This disruption leads to the partial decomposition of the heptazine ring structure, resulting in the formation of C≡N functionalities on the CN surface, which are enriched with hydroxyl groups and undergo cyano modification. The formation of heterojunctions between CN and ZnO, which facilitate charge transfer along an immobilization pathway, accelerated charge transfer processes and improved reactant adsorption as well as electron utilization efficiency. The resulting catalyst was employed for the room temperature, atmospheric pressure, and solvent-free photocatalytic selective oxidation of cumene (CM), achieving a cumene conversion rate of 28.7% and a remarkable selectivity of 92.0% toward the desired product, cumene hydroperoxide (CHP). Furthermore, this CHP induced oxidative reactions, as demonstrated by the successful oxidation of benzylamine to imine and the oxidation of sulfide to sulfoxide, both yielding high product yields. Additionally, the utilization of a continuous-flow device significantly reduces the reaction time required for these oxidation processes. This work not only introduces an innovative approach to environmentally friendly, sustainable, clean, and efficient PHI synthesis but also underscores the promising potential and advantages of carbon nitride-based photocatalysts in the realm of sustainable and green organic transformations.
Collapse
Affiliation(s)
- Hongfei Zhu
- State Key Laboratory of Fine Chemicals and MOE Frontiers Center for Intelligent Materials and Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jingnan Zhao
- State Key Laboratory of Fine Chemicals and MOE Frontiers Center for Intelligent Materials and Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Liyuan Duan
- State Key Laboratory of Fine Chemicals and MOE Frontiers Center for Intelligent Materials and Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Guofeng Zhao
- State Key Laboratory of Fine Chemicals and MOE Frontiers Center for Intelligent Materials and Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zongyi Yu
- State Key Laboratory of Fine Chemicals and MOE Frontiers Center for Intelligent Materials and Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jianing Li
- State Key Laboratory of Fine Chemicals and MOE Frontiers Center for Intelligent Materials and Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Huinan Sun
- State Key Laboratory of Fine Chemicals and MOE Frontiers Center for Intelligent Materials and Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Qingwei Meng
- State Key Laboratory of Fine Chemicals and MOE Frontiers Center for Intelligent Materials and Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P. R. China
| |
Collapse
|
11
|
da Silva MAR, Tarakina NV, Filho JBG, Cunha CS, Rocha GFSR, Diab GAA, Ando RA, Savateev O, Agirrezabal-Telleria I, Silva IF, Stolfi S, Ghigna P, Fagnoni M, Ravelli D, Torelli P, Braglia L, Teixeira IF. Single-Atoms on Crystalline Carbon Nitrides for Selective C─H Photooxidation: A Bridge to Achieve Homogeneous Pathways in Heterogeneous Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304152. [PMID: 37986204 DOI: 10.1002/adma.202304152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/15/2023] [Indexed: 11/22/2023]
Abstract
Single-atom catalysis is a field of paramount importance in contemporary science due to its exceptional ability to combine the domains of homogeneous and heterogeneous catalysis. Iron and manganese metalloenzymes are known to be effective in C─H oxidation reactions in nature, inspiring scientists to mimic their active sites in artificial catalytic systems. Herein, a simple and versatile cation exchange method is successfully employed to stabilize low-cost iron and manganese single-atoms in poly(heptazine imides) (PHI). The resulting materials are employed as photocatalysts for toluene oxidation, demonstrating remarkable selectivity toward benzaldehyde. The protocol is then extended to the selective oxidation of different substrates, including (substituted) alkylaromatics, benzyl alcohols, and sulfides. Detailed mechanistic investigations revealed that iron- and manganese-containing photocatalysts work through a similar mechanism via the formation of high-valent M═O species. Operando X-ray absorption spectroscopy (XAS) is employed to confirm the formation of high-valent iron- and manganese-oxo species, typically found in metalloenzymes involved in highly selective C─H oxidations.
Collapse
Affiliation(s)
- Marcos A R da Silva
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Nadezda V Tarakina
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - José B G Filho
- Department of Chemistry, ICEx, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Carla S Cunha
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Guilherme F S R Rocha
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Gabriel A A Diab
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Rômulo Augusto Ando
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil
| | - Oleksandr Savateev
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Iker Agirrezabal-Telleria
- Department of Chemical and Environmental Engineering of the Bilbao Engineering School, University of Basque Country (UPV/EHU), Plaza Torres Quevedo 1, Bilbao, 48013, Spain
| | - Ingrid F Silva
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Sara Stolfi
- Department of Chemistry, University of Pavia, viale Taramelli 12, Pavia, 27100, Italy
| | - Paolo Ghigna
- Department of Chemistry, University of Pavia, viale Taramelli 12, Pavia, 27100, Italy
| | - Maurizio Fagnoni
- Department of Chemistry, University of Pavia, viale Taramelli 12, Pavia, 27100, Italy
| | - Davide Ravelli
- Department of Chemistry, University of Pavia, viale Taramelli 12, Pavia, 27100, Italy
| | - Piero Torelli
- TASC Laboratory, CNR-IOM, Istituto Officina dei Materiali, Trieste, 34149, Italy
| | - Luca Braglia
- TASC Laboratory, CNR-IOM, Istituto Officina dei Materiali, Trieste, 34149, Italy
| | - Ivo F Teixeira
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| |
Collapse
|
12
|
He K, Huang Z, Chen C, Qiu C, Zhong YL, Zhang Q. Exploring the Roles of Single Atom in Hydrogen Peroxide Photosynthesis. NANO-MICRO LETTERS 2023; 16:23. [PMID: 37985523 PMCID: PMC10661544 DOI: 10.1007/s40820-023-01231-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/30/2023] [Indexed: 11/22/2023]
Abstract
This comprehensive review provides a deep exploration of the unique roles of single atom catalysts (SACs) in photocatalytic hydrogen peroxide (H2O2) production. SACs offer multiple benefits over traditional catalysts such as improved efficiency, selectivity, and flexibility due to their distinct electronic structure and unique properties. The review discusses the critical elements in the design of SACs, including the choice of metal atom, host material, and coordination environment, and how these elements impact the catalytic activity. The role of single atoms in photocatalytic H2O2 production is also analysed, focusing on enhancing light absorption and charge generation, improving the migration and separation of charge carriers, and lowering the energy barrier of adsorption and activation of reactants. Despite these advantages, several challenges, including H2O2 decomposition, stability of SACs, unclear mechanism, and low selectivity, need to be overcome. Looking towards the future, the review suggests promising research directions such as direct utilization of H2O2, high-throughput synthesis and screening, the creation of dual active sites, and employing density functional theory for investigating the mechanisms of SACs in H2O2 photosynthesis. This review provides valuable insights into the potential of single atom catalysts for advancing the field of photocatalytic H2O2 production.
Collapse
Affiliation(s)
- Kelin He
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518000, China
- Queensland Micro- and Nanotechnology Centre, School of Environment and Science, Griffith University, Nathan, QLD, 4222, Australia
| | - Zimo Huang
- Queensland Micro- and Nanotechnology Centre, School of Environment and Science, Griffith University, Nathan, QLD, 4222, Australia
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 51006, China
| | - Chao Chen
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518000, China
| | - Chuntian Qiu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
| | - Yu Lin Zhong
- Queensland Micro- and Nanotechnology Centre, School of Environment and Science, Griffith University, Nathan, QLD, 4222, Australia.
| | - Qitao Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518000, China.
| |
Collapse
|