1
|
Peralta YM, Molina R, Moreno S. Rice HUSK silica: A review from conventional uses to new catalysts for advanced oxidation processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122735. [PMID: 39378807 DOI: 10.1016/j.jenvman.2024.122735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/25/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
The rice industry is of great importance worldwide and within the cereal industrialization process, rice husk is obtained as waste, a by-product with various alternative uses, among others, the obtaining of amorphous silica, a covalent oxide with chemical, structural and textural properties suitable for use as catalytic support. This review shows the potential of rice husk silica in the synthesis of heterogeneous catalysts with transition metals for the oxidation of different polluting molecules present in water, as well as the limitations of the catalytic system and the way to overcome them through new synthesis routes, to obtain single atom catalysts - SACs. The main preparation strategies applied for aqueous phase systems are summarized, as well as the studies of single atom catalysts in oxidation reactions of recalcitrant compounds using silica as support and, finally, the perspectives and opportunities regarding this novel topic.
Collapse
Affiliation(s)
- Yury M Peralta
- Estado Sólido y Catálisis Ambiental ESCA, Departamento de Química, Universidad Nacional de Colombia, Carrera 30 N8 45-03, Bogotá, Colombia.
| | - Rafael Molina
- Estado Sólido y Catálisis Ambiental ESCA, Departamento de Química, Universidad Nacional de Colombia, Carrera 30 N8 45-03, Bogotá, Colombia
| | - Sonia Moreno
- Estado Sólido y Catálisis Ambiental ESCA, Departamento de Química, Universidad Nacional de Colombia, Carrera 30 N8 45-03, Bogotá, Colombia.
| |
Collapse
|
2
|
Shang D, Wang S, Li J, Zhan S, Hu W, Li Y. Constructing Nano-Heterostructure with Dual-Site to Boost H 2O 2 Activation and Regulate the Transformation of Free Radicals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311984. [PMID: 38461526 DOI: 10.1002/smll.202311984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/18/2024] [Indexed: 03/12/2024]
Abstract
A major issue with Fenton-like reaction is the excessive consumption of H2O2 caused by the sluggish regeneration rate of low-valent metal, and how to improve the activation efficiency of H2O2 has become a key in current research. Herein, a nano-heterostructure catalyst (1.0-MnCu/C) based on nano-interface engineering is constructed by supporting Cu and MnO on carbon skeleton, and its kinetic rate for the degradation of tetracycline hydrochloride is 0.0436 min-1, which is 2.9 times higher than that of Cu/C system (0.0151 min-1). The enhancement of removal rate results from the introduced Mn species can aggregate and transfer electrons to Cu sites through the electron bridge Mn-N/O-Cu, thus preventing Cu2+ from oxidizing H2O2 to form O2 •-, and facilitating the reduction of Cu2+ and generating more reactive oxygen species (1O2 and ·OH) with stronger oxidation ability, resulting in H2O2 utilization efficiency is 1.9 times as much as that of Cu/C. Additionally, the good and stable practical application capacity in different bodies demonstrates that it has great potential for practical environmental remediation.
Collapse
Affiliation(s)
- Denghui Shang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Siyu Wang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Jialu Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Sihui Zhan
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yi Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
3
|
Miao J, Jiang Y, Wang X, Li X, Zhu Y, Shao Z, Long M. Correlating active sites and oxidative species in single-atom catalyzed Fenton-like reactions. Chem Sci 2024; 15:11699-11718. [PMID: 39092108 PMCID: PMC11290428 DOI: 10.1039/d4sc02621g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/29/2024] [Indexed: 08/04/2024] Open
Abstract
Single-atom catalysts (SACs) have gained widespread popularity in heterogeneous catalysis-based advanced oxidation processes (AOPs), owing to their optimal metal atom utilization efficiency and excellent recyclability by triggering reactive oxidative species (ROS) for target pollutant oxidation in water. Systematic summaries regarding the correlation between the active sites, catalytic activity, and reactive species of SACs have rarely been reported. This review provides an overview of the catalytic performance of carbon- and metal oxide-supported SACs in Fenton-like reactions, as well as the different oxidation pathways induced by the metal and non-metal active sites, including radical-based pathways (e.g., ·OH and SO4˙-) and nonradical-based pathways (e.g. 1O2, high-valent metal-oxo species, and direct electron transfer). Thereafter, we discuss the effects of metal types, coordination environments, and spin states on the overall catalytic performance and the generated ROS in Fenton-like reactions. Additionally, we provide a perspective on the future challenges and prospects for SACs in water purification.
Collapse
Affiliation(s)
- Jie Miao
- School of Environmental Science and Engineering, Nanjing Tech University Nanjing 211816 China
| | - Yunyao Jiang
- School of Environmental Science and Engineering, Nanjing Tech University Nanjing 211816 China
| | - Xixi Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 210009 China
| | - Xue Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Yuan Zhu
- School of Chemistry and Chemical Engineering, Queen's University Belfast Belfast BT7 1NN UK
| | - Zongping Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 210009 China
- Department of Chemical Engineering, Curtin University Perth 6845 Australia
| | - Mingce Long
- School of Environmental Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
4
|
Cheng G, Chen F, Li S, Hu Y, Dai Z, Hu Z, Gan Z, Sun Y, Zheng X. Precise design of dual active-site catalysts for synergistic catalytic therapy of tumors. J Mater Chem B 2024; 12:1512-1522. [PMID: 38251988 DOI: 10.1039/d3tb02145a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
A proven and promising method to improve the catalytic performance of single-atom catalysts through the interaction between bimetallic atoms to change the active surface sites or adjust the catalytic sites of reactants is reported. In this work, we used an iron-platinum bimetallic reagent as the metal source to precisely synthesise covalent organic framework-derived diatomic catalysts (FePt-DAC/NC). Benefiting from the coordination between the two metal atoms, the presence of Pt single atoms can successfully regulate Fe-N3 activity. FePt-DAC/NC exhibited a stronger ability to catalyze H2O2 to produce toxic hydroxyl radicals than Fe single-atom catalysts (Fe-SA/NC) to achieve chemodynamic therapy of tumors (the catalytic efficiency improved by 186.4%). At the same time, under the irradiation of an 808 nm laser, FePt-DAC/NC exhibited efficient photothermal conversion efficiency to achieve photothermal therapy of tumors. Both in vitro and in vivo results indicate that FePt-DAC/NC can efficiently suppress tumor cell growth by a synergistic therapeutic effect with photothermally augmented nanocatalytic therapy. This novel bimetallic dual active-site monodisperse catalyst provides an important example for the application of single-atom catalysts in the biomedical field, highlighting its promising clinical potential.
Collapse
Affiliation(s)
- Guodong Cheng
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, P. R. China.
- Qilu Normal University, Jinan, 250013, P. R. China
| | - Fuying Chen
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, P. R. China.
| | - Shulian Li
- Linyi Cancer Hospital, Linyi, 272067, P. R. China
| | - Yu Hu
- Zhucheng City People's Hospital, Zhucheng, 262200, P. R. China
| | - Zhichao Dai
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, P. R. China.
| | - Zunfu Hu
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, P. R. China.
| | - Zibao Gan
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, P. R. China.
| | - Yunqiang Sun
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, P. R. China.
| | - Xiuwen Zheng
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, P. R. China.
- Qilu Normal University, Jinan, 250013, P. R. China
| |
Collapse
|
5
|
Garg S, Singla R, Goel N. DFT Study on the Spin States of Polyaniline-3d Transition-Metal (Sc-Zn) Composites and Their Sensing Application to Detect Chemical Warfare Agents. J Phys Chem A 2024; 128:773-784. [PMID: 38231826 DOI: 10.1021/acs.jpca.3c07114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Organic-inorganic composite materials, combining polymers with transition metal (TM) atoms based on PAni and 3d TMs, have been designed and investigated in various spin states by performing density functional calculations. These designed composites were analyzed for their stability in different spin states as well as for their calculated electronic properties, including binding energies, frontier molecular orbitals, and dipole moments. Additionally, 3D isosurfaces and 2D scattered plots of reduced density gradient as a function of (sign λ2)ρ provide insights into the noncovalent interactions between the composite units. The most stable Mn@PAni composite has been assessed as a sensing material for chemical warfare blood agents (HCN, NCCl, NCBr, NCCN, and AsH3) using density functional-based calculations. The reduced band gap and significant red/blue shift in the UV-vis spectra obtained through TDDFT calculations underline the selectivity and efficiency of the Mn@PAni composite toward different analytes.
Collapse
Affiliation(s)
- Shivangi Garg
- Computational and Theoretical Chemistry Group, Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Rajan Singla
- Computational and Theoretical Chemistry Group, Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Neetu Goel
- Computational and Theoretical Chemistry Group, Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
- Fulbright Fellow at Department of Physics, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
6
|
Shahrezaei M, Hejazi SMH, Kmentova H, Sedajova V, Zboril R, Naldoni A, Kment S. Ultrasound-Driven Defect Engineering in TiO 2-x Nanotubes─Toward Highly Efficient Platinum Single Atom-Enhanced Photocatalytic Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37976-37985. [PMID: 37490013 PMCID: PMC10416212 DOI: 10.1021/acsami.3c04811] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023]
Abstract
Single-atom catalysts (SACs) have demonstrated superior catalytic activity and selectivity compared to nanoparticle catalysts due to their high reactivity and atom efficiency. However, stabilizing SACs within hosting substrates and their controllable loading preventing single atom clustering remain the key challenges in this field. Moreover, the direct comparison of (co-) catalytic effect of single atoms vs nanoparticles is still highly challenging. Here, we present a novel ultrasound-driven strategy for stabilizing Pt single-atomic sites over highly ordered TiO2 nanotubes. This controllable low-temperature defect engineering enables entrapment of platinum single atoms and controlling their content through the reaction time of consequent chemical impregnation. The novel methodology enables achieving nearly 50 times higher normalized hydrogen evolution compared to pristine titania nanotubes. Moreover, the developed procedure allows the decoration of titania also with ultrasmall nanoparticles through a longer impregnation time of the substrate in a very dilute hexachloroplatinic acid solution. The comparison shows a 10 times higher normalized hydrogen production of platinum single atoms compared to nanoparticles. The mechanistic study shows that the novel approach creates homogeneously distributed defects, such as oxygen vacancies and Ti3+ species, which effectively trap and stabilize Pt2+ and Pt4+ single atoms. The optimized platinum single-atom photocatalyst shows excellent performance of photocatalytic water splitting and hydrogen evolution under one sun solar-simulated light, with TOF values being one order of magnitude higher compared to those of traditional thermal reduction-based methods. The single-atom engineering based on the creation of ultrasound-triggered chemical traps provides a pathway for controllable assembling stable and highly active single-atomic site catalysts on metal oxide support layers.
Collapse
Affiliation(s)
- Mahdi Shahrezaei
- Czech
Advanced Technology and Research Institute, Regional Centre of Advanced
Technologies and Materials, Palacký
University Olomouc, Slechtitelu 27, 77900 Olomouc, Czech Republic
- Department
of Physical Chemistry, Faculty of Science, Palacky University, 17. listopadu 1192/12, 77900 Olomouc, Czech Republic
| | - S. M. Hossein Hejazi
- Czech
Advanced Technology and Research Institute, Regional Centre of Advanced
Technologies and Materials, Palacký
University Olomouc, Slechtitelu 27, 77900 Olomouc, Czech Republic
- CEET,
Nanotechnology Centre, VŠB−Technical
University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava-Poruba, Czech Republic
| | - Hana Kmentova
- Czech
Advanced Technology and Research Institute, Regional Centre of Advanced
Technologies and Materials, Palacký
University Olomouc, Slechtitelu 27, 77900 Olomouc, Czech Republic
| | - Veronika Sedajova
- Czech
Advanced Technology and Research Institute, Regional Centre of Advanced
Technologies and Materials, Palacký
University Olomouc, Slechtitelu 27, 77900 Olomouc, Czech Republic
| | - Radek Zboril
- Czech
Advanced Technology and Research Institute, Regional Centre of Advanced
Technologies and Materials, Palacký
University Olomouc, Slechtitelu 27, 77900 Olomouc, Czech Republic
- CEET,
Nanotechnology Centre, VŠB−Technical
University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava-Poruba, Czech Republic
| | - Alberto Naldoni
- Department
of Chemistry and NIS Centre, University
of Turin, Turin 10125, Italy
| | - Stepan Kment
- Czech
Advanced Technology and Research Institute, Regional Centre of Advanced
Technologies and Materials, Palacký
University Olomouc, Slechtitelu 27, 77900 Olomouc, Czech Republic
- CEET,
Nanotechnology Centre, VŠB−Technical
University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava-Poruba, Czech Republic
| |
Collapse
|
7
|
Song M, Han J, Wang Y, Chen L, Chen Y, Liao X. Effects and Mechanisms of Cu Species in Fe-MOFs on Fenton-Like Catalytic Activity and Stability. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37464747 DOI: 10.1021/acsami.3c05928] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Fe-based MOFs (Fe-MOFs) are deemed promising Fenton-like catalysts due to their well-developed pores and accessible active sites. However, their inferior catalytic activity, iron leaching, and low H2O2 utilization always hinder their application as Fe-based MOF catalysts. In this work, we manipulated the structure of Fe-oxo nodes in MIL-88B(Fe) via a CuI species substitution method, affording a mixed-valence (Cu-incorporated Fe-MOFs) with highly improved Fenton-like performance. It is found that the CuI serves as a shuttle to promote transfer between FeII/FeIII, inducing the formation of a larger amount of stable FeII sites, which was proven by experimental and DFT calculation results. A linear relationship was observed for the Fenton-like performance and the amount of CuI species for the catalysts. The corresponding value of the •OH formation is 2.17 eV for Cu-incorporated MIL-88B(Fe), which is significantly lower than that of MIL-88B(Fe) (2.69 eV). Meanwhile, the enriched CuI species suppress Fe species leaching during the catalytic reaction. The Fe-ion leakage of 0.4Cu@MIL-88B is very tiny (0.01-0.03 mg/L), significantly less than that of MIL-88B (2.00-3.02 mg/L). At the same time, H2O2 utilization for 0.4Cu@ MIL-88B(Fe) is 88%, which is almost 4.4 times that of pure MIL-88B(Fe). This work provides insights into the rational design of Fe-MOFs as promising Fenton-like catalysts for wastewater treatment.
Collapse
Affiliation(s)
- Mengzhen Song
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Jingru Han
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Yingzhi Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Lungang Chen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - YanYan Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, China
| | - Xiaoyuan Liao
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300222, China
| |
Collapse
|
8
|
Chen YS, Shi WZ, Luo KH, Yeh JM, Tsai MH. In Situ Redox Synthesis of Highly Stable Au/Electroactive Polyimide Composite and Its Application on 4-Nitrophenol Reduction. Polymers (Basel) 2023; 15:2664. [PMID: 37376310 DOI: 10.3390/polym15122664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
In this study, we developed a series of Au/electroactive polyimide (Au/EPI-5) composite for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) using NaBH4 as a reducing agent at room temperature. The electroactive polyimide (EPI-5) synthesis was performed by chemical imidization of its 4,4'-(4.4'-isopropylidene-diphenoxy) bis (phthalic anhydride) (BSAA) and amino-capped aniline pentamer (ACAP). In addition, prepare different concentrations of Au ions through the in-situ redox reaction of EPI-5 to obtain Au nanoparticles (AuNPs) and anchored on the surface of EPI-5 to form series of Au/EPI-5 composite. Using SEM and HR-TEM confirm the particle size (23-113 nm) of the reduced AuNPs increases with the increase of the concentration. Based on CV studies, the redox capability of as-prepared electroactive materials was found to show an increase trend: 1Au/EPI-5 < 3Au/EPI-5 < 5Au/EPI-5. The series of Au/EPI-5 composites showed good stability and catalytic activity for the reaction of 4-NP to 4-AP. Especially, the 5Au/EPI-5 composite shows the highest catalytic activity when applied for the reduction of 4-NP to 4-AP within 17 min. The rate constant and kinetic activity energy were calculated to be 1.1 × 10-3 s-1 and 38.9 kJ/mol, respectively. Following a reusability test repeated 10 times, the 5Au/EPI-5 composite maintained a conversion rate higher than 95%. Finally, this study elaborates the mechanism of the catalytic reduction of 4-NP to 4-AP.
Collapse
Affiliation(s)
- Yi-Sheng Chen
- Department of Chemical and Materials Engineering, National Chin-Yi University of Technology, Taichung 411030, Taiwan
| | - Wei-Zhong Shi
- Department of Chemical and Materials Engineering, National Chin-Yi University of Technology, Taichung 411030, Taiwan
| | - Kun-Hao Luo
- Department of Chemistry, Chung Yuan Christian University, Chung Li District' Tao-Yuan City 32023, Taiwan
| | - Jui-Ming Yeh
- Department of Chemistry, Chung Yuan Christian University, Chung Li District' Tao-Yuan City 32023, Taiwan
| | - Mei-Hui Tsai
- Department of Chemical and Materials Engineering, National Chin-Yi University of Technology, Taichung 411030, Taiwan
- Graduate Institute of Precision Manufacturing, National Chin-Yi University of Technology, Taichung 411030, Taiwan
| |
Collapse
|