1
|
Zhong Z, You D, Wan Y, Pan Z, Cheng Q. Coupling Cu Coordination Polymers with CdS Forming an S-Scheme Heterojunction for Rapid Charge Separation and High Photocatalytic Activity. Inorg Chem 2024; 63:14509-14524. [PMID: 39021119 DOI: 10.1021/acs.inorgchem.4c01767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Energy and the environment are significant impacting factors for the future development of humankind. In order to improve the corrosion resistance of CdS and decrease the recombination of photogenerated carriers, a novel Cu-CPs@CdS heterojunction with high efficiency mesopores was constructed by a simple hydrothermal method. The effective interfacial contact formation between nano-CdS and Cu-CPs promotes the transfer of photogenerated carriers while exhibiting a high spatial separation rate of charges. The photocatalytic performance of the heterojunction was evaluated by the photocatalytic degradation of organic pollutants and photocatalytic hydrogen generation. The photocatalytic degradation of ciprofloxacin (CIP) could reach 90.34%, and the hydrogen generation was high as 9227.82 μmol·g-1 under simulated sunlight irradiation. The boosted photocatalytic activity of Cu-CPs@CdS results from (i) the formation of coordination bonds, which not only enhanced the stability of heterojunctions but also provided a path for photogenerated carrier migration, (ii) integrating Cu-CPs, which provided more active sites, and (iii) the matched energy band structure between CdS and Cu-CPs that promoted speedy S-scheme interfacial charge-transfer pathways, culminating in efficient photogenerated charge separation and transfer. This research offered a fresh tactic to restrict photocorrosion and enhance the production of photocatalytic H2 over CdS-based catalysts.
Collapse
Affiliation(s)
- Zhenfeng Zhong
- Engineering Research Center of Phosphorous Development and Utilization of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Dan You
- School of Chemical and Materials Engineering, College of Post and Telecommunication of Wuhan Institute of Technology, Wuhan 430073, PR China
| | - Yuqi Wan
- The Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, PR China
| | - Zhiquan Pan
- Engineering Research Center of Phosphorous Development and Utilization of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Qingrong Cheng
- Engineering Research Center of Phosphorous Development and Utilization of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, PR China
| |
Collapse
|
2
|
Liu Y, Luo G, Liu Y, Xu Z, Shen H, Sheng Y, Zhu Y, Wu S, Liu L, Shan Y. Zinc-doped C 4N 3/BiOBr S-scheme heterostructured hollow spheres for efficient photocatalytic degradation of tetracycline. Phys Chem Chem Phys 2024; 26:19658-19672. [PMID: 38963731 DOI: 10.1039/d4cp01043d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Photocatalytic degradation of organic pollutants in water is of great significance to the sustainable development of the environment, but encounters limited efficiency when a single compound is used. Thus, there have been enormous efforts to find novel photocatalytic heterostructured composites with high performance. In this work, a novel S-scheme heterostructure is constructed with BiOBr and Zn2+ doped C4N3 (Zn-C4N3) by a solvothermal method for efficient photodegradation of tetracycline (TC), a residual antibiotic difficult to be removed from the aquatic environment. Thanks to Zn2+-doping induced improvement in chemical affinity between Zn-C4N3 and BiOBr, well-formed Zn-C4N3/BiOBr heterostructured hollow spheres are formed. This structure can efficiently suppress fast recombination of photogenerated electron-hole pairs to enhance the photocatalytic activity of BiOBr dramatically. At a room temperature of 25 °C and neutral pH 7, the catalyst can degrade a significant portion of TC pollutants within 30 min under visible light. Also, the Zn-C4N3/BiOBr heterostructure displays good stability after recycling experiments. Free radical capture experiments and ESR tests show that ˙O2- is the main active substance for photocatalytic degradation of TC. This study provides new insights for constructing heterostructures with an intimate interface between the two phases for photocatalytic applications.
Collapse
Affiliation(s)
- Yaqi Liu
- Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, China.
- Nanjing Key Laboratory of Advanced Functional Materials, Nanjing Xiaozhuang University, Nanjing, 211171, People's Republic of China.
| | - Guicheng Luo
- Nanjing Key Laboratory of Advanced Functional Materials, Nanjing Xiaozhuang University, Nanjing, 211171, People's Republic of China.
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| | - Yichen Liu
- Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, China.
- Nanjing Key Laboratory of Advanced Functional Materials, Nanjing Xiaozhuang University, Nanjing, 211171, People's Republic of China.
| | - Zuozheng Xu
- Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, China.
- Nanjing Key Laboratory of Advanced Functional Materials, Nanjing Xiaozhuang University, Nanjing, 211171, People's Republic of China.
| | - Hengxin Shen
- Nanjing Key Laboratory of Advanced Functional Materials, Nanjing Xiaozhuang University, Nanjing, 211171, People's Republic of China.
| | - Yuxiang Sheng
- Nanjing Key Laboratory of Advanced Functional Materials, Nanjing Xiaozhuang University, Nanjing, 211171, People's Republic of China.
| | - Yuan Zhu
- Nanjing Key Laboratory of Advanced Functional Materials, Nanjing Xiaozhuang University, Nanjing, 211171, People's Republic of China.
| | - Shuyi Wu
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic China.
| | - Lizhe Liu
- Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, China.
| | - Yun Shan
- Nanjing Key Laboratory of Advanced Functional Materials, Nanjing Xiaozhuang University, Nanjing, 211171, People's Republic of China.
| |
Collapse
|
3
|
Wu Q, Jiang H, Ren H, Wu Y, Zhou Y, Chen J, Xu X, Wu X. Surface CN bonds mediate photocatalytic CO 2 reduction into efficient CH 4 production in TiO 2-decorated g-C 3N 4 nanosheets. J Colloid Interface Sci 2024; 663:825-833. [PMID: 38447397 DOI: 10.1016/j.jcis.2024.02.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Graphitic carbon nitride (g-C3N4, CN) has garnered considerable attention in the field of photocatalysis due to its favorable band gap and high specific surface area. However, its primary practical limitation lies in the strong radiative recombination of lone pair (LP) electronic states, leading to limited efficiency in separating photogenerated carriers and subsequently diminishing photocatalytic performance. In this study, we devised and synthesized a heterojunction photocatalytic system comprising TiO2 nanosheets supported on modified g-C3N4 (MCN), designated as MCN/TiO2. The presence of CN functional groups on the tri-s-triazine nitrogen captures photogenerated electrons by modifying LP electronic states, resulting in a reduction in the fluorescence emission intensity of g-C3N4. Simultaneously, it forms chemical bonds with the supported TiO2 nanosheets, creating an efficient electron transfer pathway for the accumulation of photogenerated electrons at the active Ti sites. Experimentally, the MCN/TiO2 photocatalytic system exhibited optimal performance in CO2 reduction. The CH4 production rate reached 26.59 μmol g-1 h-1, surpassing that of TiO2 and CN/TiO2 by approximately 8 and 3 times, respectively. Furthermore, this photocatalytic system demonstrated exceptional photostability over five cycles, each lasting 4 h. This research offers a valuable approach for the efficient separation and transfer of photogenerated carriers in composite materials based on g-C3N4.
Collapse
Affiliation(s)
- Qifan Wu
- National Laboratory of Solid States Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
| | - Haojie Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School & School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Hengdong Ren
- National Laboratory of Solid States Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
| | - Yin Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School & School of Life Sciences, Nanjing University, Nanjing 210093, China.
| | - Yong Zhou
- National Laboratory of Solid States Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
| | - Jian Chen
- National Laboratory of Solid States Microstructures and Research Institute of Superconductor Electronics, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Xiaobing Xu
- College of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China.
| | - Xinglong Wu
- National Laboratory of Solid States Microstructures and School of Physics, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
4
|
Iniyan S, Ren J, Deshmukh S, Rajeswaran K, Jegan G, Hou H, Suryanarayanan V, Murugadoss V, Kathiresan M, Xu BB, Guo Z. An Overview of Metal-organic Framework Based Electrocatalysts: Design and Synthesis for Electrochemical Hydrogen Evolution, Oxygen Evolution, and Carbon Dioxide Reduction Reactions. CHEM REC 2023:e202300317. [PMID: 38054611 DOI: 10.1002/tcr.202300317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/03/2023] [Indexed: 12/07/2023]
Abstract
Due to the increasing global energy demands, scarce fossil fuel supplies, and environmental issues, the pursued goals of energy technologies are being sustainable, more efficient, accessible, and produce near zero greenhouse gas emissions. Electrochemical water splitting is considered as a highly viable and eco-friendly energy technology. Further, electrochemical carbon dioxide (CO2 ) reduction reaction (CO2 RR) is a cleaner strategy for CO2 utilization and conversion to stable energy (fuels). One of the critical issues in these cleaner technologies is the development of efficient and economical electrocatalyst. Among various materials, metal-organic frameworks (MOFs) are becoming increasingly popular because of their structural tunability, such as pre- and post- synthetic modifications, flexibility in ligand design and its functional groups, and incorporation of different metal nodes, that allows for the design of suitable MOFs with desired quality required for each process. In this review, the design of MOF was discussed for specific process together with different synthetic methods and their effects on the MOF properties. The MOFs as electrocatalysts were highlighted with their performances from the aspects of hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and electrochemical CO2 RR. Finally, the challenges and opportunities in this field are discussed.
Collapse
Affiliation(s)
- S Iniyan
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, India
| | - Juanna Ren
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Swapnil Deshmukh
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, India
- DKTE Society's Textile and Engineering an Autonomous Institute, Ichalkaranji, 416115, India
| | - K Rajeswaran
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, India
| | - G Jegan
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, India
| | - Hua Hou
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China
| | - Vembu Suryanarayanan
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, India
| | - Vignesh Murugadoss
- Membrane and Separation Technology Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata, 700032, India
| | - Murugavel Kathiresan
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, India
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Zhanhu Guo
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| |
Collapse
|
5
|
Liu S, Fan F, Li P, Sun R, Wan Y, Chang K, Zhou Y. Designing Surface-Defect Engineering to Enhance the Solar-Driven Conversion of CO 2 to C 2 Products over Zn 3In 2S 6/ZnS. J Phys Chem Lett 2023; 14:9978-9985. [PMID: 37905792 DOI: 10.1021/acs.jpclett.3c02675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The manipulation of electronic structure and prevention of photogenerated carriers from being quenched in bulk defects during the photocatalytic CO2 reduction reaction (CRR) have been effectively demonstrated through surface vacancy and defect engineering. In this work, the electronic structure on the surface of Zn3In2S6/ZnS (ZIS/ZnS) is significantly modified by the introduction and control of the surface S vacancies (SV) through Ar-plasma treatment. EPR and XPS analyses confirmed that SV was exclusively present on the ZIS/ZnS surface. The resulting ZIS/ZnS heterojunction photocatalysts demonstrate an impressive 46.6% selectivity toward C2 products even in the absence of cocatalysts. The mechanism of photocatalytic CRR is further elucidated through in situ analysis. Theoretical calculations demonstrate that the presence of In and Zn atoms adjacent to SV significantly enhances the adsorption of CO2 and facilitates C-C coupling.
Collapse
Affiliation(s)
- Shuaishuai Liu
- Centre for Hydrogenergy, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Fang Fan
- Centre for Hydrogenergy, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Pengxin Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Ruixue Sun
- Centre for Hydrogenergy, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Yutong Wan
- Centre for Hydrogenergy, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Kun Chang
- Centre for Hydrogenergy, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Yong Zhou
- Key Laboratory of Modern Acoustics (MOE), Institute of Acoustics, School of Physics, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Eco-Materials and Renewable Energy Research Center (ERERC), Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| |
Collapse
|