1
|
Deng H, Chen J, Wang H, Liu R, Zhang Y, Chang H, Tung CH, Zhang W. Hijacking the hyaluronan assisted iron endocytosis to promote the ferroptosis in anticancer photodynamic therapy. Carbohydr Polym 2025; 351:123123. [PMID: 39779030 DOI: 10.1016/j.carbpol.2024.123123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
Photodynamic therapy (PDT) eradicates tumor cells by the light-stimulated reactive oxygen species, which also induces lipid peroxidation (LPO) and subsequently ferroptosis, an iron-depended cell death. Ferroptosis has a tremendous therapeutic potential in cancer treatment, however, the ferroptosis efficiency is largely limited by the available iron in cells. Through hijacking the CD44-mediated iron endocytosis of hyaluronan (HA), here PDT with enhanced ferroptosis was realized by a HA@Ce6 nanogel self-assembled from HA, a photosensitizer Chlorin e6 (Ce6) and Fe3+ as cross-linkers. Taking advantages of HA's natural affinity towards CD44, HA@Ce6 enabled a targeted Ce6 delivery in CD44-overexpressed breast cancer cells and meanwhile enhanced iron uptake to "fuel" ferroptosis together with the light-stimulated LPO. Further, HA@Ce6 demonstrated an excellent anticancer PDT efficacy and ferroptosis induction in the murine 4 T1 xenograft model. This HA@Ce6 successfully exploited the role of HA in iron transport to sensitize ferroptosis, providing a potent strategy to facilitate the anticancer PDT.
Collapse
Affiliation(s)
- Hong Deng
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Jiayu Chen
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Huimin Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Runmeng Liu
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Yiyi Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Hui Chang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Ching-Hsuan Tung
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Weiqi Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China.
| |
Collapse
|
2
|
An W, Zhang K, Li G, Zheng S, Cao Y, Liu J. Hypericin mediated photodynamic therapy induces ferroptosis via inhibiting the AKT/mTORC1/GPX4 axis in cholangiocarcinoma. Transl Oncol 2025; 52:102234. [PMID: 39674093 PMCID: PMC11700288 DOI: 10.1016/j.tranon.2024.102234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/27/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024] Open
Abstract
Cholangiocarcinoma remains a challenging primary hepatobiliary malignancy with dismal prognosis. Photodynamic therapy (PDT),a less invasive treatment, has been found to inhibit the proliferation and induce ferroptosis, apoptosis and necrosis in other tumor cells in recent years. Regrettably, the role and exact molecule mechanism of PDT is still incompletely clear in cholangiocarcinoma cells. Ferroptosis is a novel regulated cell death(RCD), which is controlled by glutathione peroxidase4(GPX4) with the characteristics of iron dependent and excessive intracellular accumulation of lipid peroxides. This novel form of RCD has attracted great attention as a potential new target in clinical oncology during recent years. In this study, we observed that hypericin mediated PDT(HY-PDT) could significantly inhibit the proliferation of the cholangiocarcinoma cells and suppress migration and the epithelial mesenchymal transition (EMT) as well. Then, we conducted transcriptome sequencing and bioinformatics analysis and observed that HY-PDT was most likely involved in ferroptosis, apoptosis, the EMT process and AKT/mTORC1 signaling pathways in cholangiocarcinoma cells. Next, a series of in vitro and in vivo experiments were performed to confirm that HY-PDT could trigger cholangiocarcinoma cells ferroptosis through inhibiting the expression of GPX4 protein. In terms of molecular mechanism, we found that HY-PDT induced ferroptosis by decreasing GPX4 expression via suppression of the AKT/mTORC1 signaling pathway. In addition, we also found that HY-PDT inhibit cholangiocarcinoma cells migration and the EMT process by inhibiting the AKT/mTORC1 pathway. Our study illustrated a new mechanism of action for HY-PDT and might throw light on the individualized precision therapy for cholangiocarcinoma patients.
Collapse
Affiliation(s)
- Wei An
- Department of Hepatobiliary surgery, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong 250031, China; Department of Hepatobiliary surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Kai Zhang
- Department of Hepatobiliary surgery, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong 250031, China
| | - Guangbing Li
- Department of Hepatobiliary surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Shunzhen Zheng
- Department of Hepatobiliary surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Yukun Cao
- Department of Hepatobiliary surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Jun Liu
- Department of Hepatobiliary surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China.
| |
Collapse
|
3
|
Zhang Y, Yi S, Luan M. Advances in non-apoptotic regulated cell death: implications for malignant tumor treatment. Front Oncol 2025; 15:1519119. [PMID: 39949740 PMCID: PMC11821507 DOI: 10.3389/fonc.2025.1519119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Cell death mechanisms are broadly classified into accidental cell death (ACD) and regulated cell death (RCD). ACD such as necrosis, is an uncontrolled, accidental process, while RCD is tightly regulated by specific signaling pathways and molecular mechanisms. Tumor cells are characterized by their ability to evade cell death and sustain uncontrolled proliferation. The failure of programmed cell death is a key contributor to tumor initiation, progression, and resistance to cancer therapies. Traditionally, research has focused primarily on apoptosis as the dominant form of RCD in cancer. However, emerging evidence highlights the importance of other non-apoptotic forms of RCD, such as pyroptosis, ferroptosis, necroptosis, and parthanatos, in tumorigenesis and treatment response. These pathways are gaining attention for their potential roles in overcoming therapy resistance. In this review, we will discuss the recent advances in the study of non-apoptotic cell death pathways in malignant tumors and explore their therapeutic implications, offering insights into new targets for cancer treatment strategies.
Collapse
Affiliation(s)
- Yizheng Zhang
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Shiqi Yi
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Mingyuan Luan
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Mitchell RJ, Havrylyuk D, Hachey AC, Heidary DK, Glazer EC. Photodynamic therapy photosensitizers and photoactivated chemotherapeutics exhibit distinct bioenergetic profiles to impact ATP metabolism. Chem Sci 2025; 16:721-734. [PMID: 39629492 PMCID: PMC11609979 DOI: 10.1039/d4sc05393a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
Energy is essential for all life, and mammalian cells generate and store energy in the form of ATP by mitochondrial (oxidative phosphorylation) and non-mitochondrial (glycolysis) metabolism. These processes can now be evaluated by extracellular flux analysis (EFA), which has proven to be an indispensable tool in cell biology, providing previously inaccessible information regarding the bioenergetic landscape of cell lines, complex tissues, and in vivo models. Recently, EFA demonstrated its utility as a screening tool in drug development, both by providing insights into small molecule-organelle interactions, and by revealing the peripheral and potentially undesired off-target effects small molecules have within cells. Surprisingly, technologies to quantify cellular bioenergetics have not been systematically applied in phototherapy development, leaving open several questions about how the mechanism of action of a compound can impact essential cellular functions. Here, we utilized the Seahorse analyzer to address this question for photosensitizers (PSs) for photodynamic therapy (PDT) and contrast these systems to molecules that photo-release a ligand and thus act as photocages or photoactivated chemotherapeutics (PACT), intending to understand the influence these two classes of compounds have on cellular bioenergetics. EFA results show that acute treatment of A549 lung adenocarcinoma cells with PDT agents induces a quiescent bioenergetic response as a result of mitochondrial respiration shutdown. The loss of oxidative phosphorylation is followed by disruption of glycolysis, which occurs after an initial increase in glycolytic respiration is unable to compensate for the interruption of the electron transport chain (ETC). In contrast, the PACT agents tested had little impact on cellular respiration, and the minor inhibition of these metabolic processes was not related to the mechanism of action, as reflected by a lack of correlation with photoejection efficiency. Notably, a system capable of both generating 1O2 and photo-releasing a ligand exhibited the dominant profile of a PDT agent and induced the quiescent bioenergetic state, indicating potential implications on cellular bioenergetics for so-called dual-action agents. These findings are presented with the aim to provide the necessary groundwork for expanding the application and utility of EFA to phototherapeutics and to highlight the role of metabolic alterations in PDT.
Collapse
|
5
|
Li H, Luo K, Liu W, Yu S, Xue W. Neutrophil-Mimicking Nanozyme with Cascade Catalytic Releasing Nitric Oxide and Signet Oxygen Property for Synergistic Bimodal Therapy of Methicillin-Resistant Staphylococcus Aureus Infections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403527. [PMID: 39031094 DOI: 10.1002/smll.202403527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/27/2024] [Indexed: 07/22/2024]
Abstract
Recently, chloroperoxidase (CPO)-mediated enzyme dynamic therapy (EDT) by mimicking the antipathogen function of neutrophils via generating highly active signet oxygen (1O2) has attracted great interest in biomedical applications. However, the therapeutic efficiency of EDT is largely restricted by the low CPO delivery efficiency and insufficient hydrogen peroxide (H2O2) supply. In the present work, a neutrophil-mimicking nanozyme of MGBC with high CPO delivery efficiency, H2O2 self-supply, and enzyme-cascade catalytic properties is designed for high-efficient treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections. In the infection microenvironment, MGBC can effectively catalyze glucose to self-supply substantial H2O2, which enables long-lasting 1O2 generation via the CPO-mediated catalytic reaction. At the meantime, MGBC can also catalyze H2O2 to sustainably release NO for gas therapy (GT), which synergistically strengthens the therapeutic effect of EDT. As a result, MGBC displayed effective MRSA-killing and MSRA biofilms-eradicating properties, and high efficiency in treating both MRSA infected full-thickness excision wounds and subcutaneous MRSA infection by exerting the synergistic bimodal EDT/GT therapeutic effects. In-depth mechanism study revealed that the synergistic EDT/GT antibacterial effects of MGBC can attenuate the drug resistance and toxicity of MRSA by significantly downregulating quorum sensing, multidrug efflux, virulence, and biofilm formation-related genes.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Keyan Luo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Wenkang Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Siming Yu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
6
|
Meng X, Shen Y, Zhao H, Lu X, Wang Z, Zhao Y. Redox-manipulating nanocarriers for anticancer drug delivery: a systematic review. J Nanobiotechnology 2024; 22:587. [PMID: 39342211 PMCID: PMC11438196 DOI: 10.1186/s12951-024-02859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024] Open
Abstract
Spatiotemporally controlled cargo release is a key advantage of nanocarriers in anti-tumor therapy. Various external or internal stimuli-responsive nanomedicines have been reported for their ability to increase drug levels at the diseased site and enhance therapeutic efficacy through a triggered release mechanism. Redox-manipulating nanocarriers, by exploiting the redox imbalances in tumor tissues, can achieve precise drug release, enhancing therapeutic efficacy while minimizing damage to healthy cells. As a typical redox-sensitive bond, the disulfide bond is considered a promising tool for designing tumor-specific, stimulus-responsive drug delivery systems (DDS). The intracellular redox imbalance caused by tumor microenvironment (TME) regulation has emerged as an appealing therapeutic target for cancer treatment. Sustained glutathione (GSH) depletion in the TME by redox-manipulating nanocarriers can exacerbate oxidative stress through the exchange of disulfide-thiol bonds, thereby enhancing the efficacy of ROS-based cancer therapy. Intriguingly, GSH depletion is simultaneously associated with glutathione peroxidase 4 (GPX4) inhibition and dihydrolipoamide S-acetyltransferase (DLAT) oligomerization, triggering mechanisms such as ferroptosis and cuproptosis, which increase the sensitivity of tumor cells. Hence, in this review, we present a comprehensive summary of the advances in disulfide based redox-manipulating nanocarriers for anticancer drug delivery and provide an overview of some representative achievements for combinational therapy and theragnostic. The high concentration of GSH in the TME enables the engineering of redox-responsive nanocarriers for GSH-triggered on-demand drug delivery, which relies on the thiol-disulfide exchange reaction between GSH and disulfide-containing vehicles. Conversely, redox-manipulating nanocarriers can deplete GSH, thereby enhancing the efficacy of ROS-based treatment nanoplatforms. In brief, we summarize the up-to-date developments of the redox-manipulating nanocarriers for cancer therapy based on DDS and provide viewpoints for the establishment of more stringent anti-tumor nanoplatform.
Collapse
Affiliation(s)
- Xuan Meng
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, P.R. China.
| | - Yongli Shen
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, P.R. China
| | - Huanyu Zhao
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, P.R. China
| | - Xinlei Lu
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, P.R. China
| | - Zheng Wang
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China.
| |
Collapse
|
7
|
Yang X, He M, Li Y, Qiu T, Zuo J, Jin Y, Fan J, Sun W, Peng X. Charge-reversal polymeric nanomodulators for ferroptosis-enhanced photodynamic therapy. J Mater Chem B 2024; 12:7113-7121. [PMID: 38919138 DOI: 10.1039/d4tb00616j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The clinical application of photodynamic therapy (PDT) has some limitations including poor tumor targeting properties, a high reductive tumor microenvironment, and inefficient activation of single cell death machinery. We herein report pH-sensitive polymeric nanomodulators (NBS-PDMC NPs) for ferroptosis-enhanced photodynamic therapy. NBS-PDMC NPs were constructed using a positively charged type-I photosensitizer (NBS) coordinated with a demethylcantharidin (DMC)-decorated block copolymer via electrostatic interactions. NBS-PDMC NPs had a negative surface charge, which ensures their high stability in bloodstream circulation, while exposure to lysosomal acidic environments reverses their surface charge to positive for tumor penetration and the release of DMC and NBS. Under NIR light irradiation, NBS generated ROS to induce cell damage; in the meantime, DMC inhibited the expression of the GPX4 protein in tumor cells and promoted ferroptosis of tumor cells. This polymer design concept provides some novel insights into smart drug delivery and combinational action to amplify the antitumor effect.
Collapse
Affiliation(s)
- Xuelong Yang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Maomao He
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yinghua Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Tian Qiu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jiexuan Zuo
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yixiao Jin
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
8
|
Liu YJ, Dong SH, Hu WH, Chen QL, Zhang SF, Song K, Han ZC, Li MM, Han ZT, Liu WB, Zhang XS. A multifunctional biomimetic nanoplatform for image-guideded photothermal-ferroptotic synergistic osteosarcoma therapy. Bioact Mater 2024; 36:157-167. [PMID: 38463554 PMCID: PMC10924166 DOI: 10.1016/j.bioactmat.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 03/12/2024] Open
Abstract
Much effort has been devoted to improving treatment efficiency for osteosarcoma (OS). However, most current approaches result in poor therapeutic responses, thus indicating the need for the development of other therapeutic options. This study developed a multifunctional nanoparticle, PDA-MOF-E-M, an aggregation of OS targeting, programmed death targeting, and near-infrared (NIR)-aided targeting. At the same time, a multifunctional nanoparticle that utilises Fe-MOFs to create a cellular iron-rich environment and erastin as a ferroptosis inducer while ensuring targeted delivery to OS cells through cell membrane encapsulation is presented. The combination of PDA-MOF-E-M and PTT increased intracellular ROS and LPO levels and induced ferroptosis-related protein expression. A PDA-based PTT combined with erastin showed significant synergistic therapeutic improvement in the anti-tumour efficiency of the nanoparticle in vitro and vivo. The multifunctional nanoparticle efficiently prevents the osteoclasia progression of OS xenograft bone tumors in vivo. Finally, this study provides guidance and a point of reference for clinical approaches to treating OS.
Collapse
Affiliation(s)
- Yu-jie Liu
- Department of Orthopedic Oncology and Spine Tumor Center, Changzheng Hospital, Second Military Medical University, Shanghai, 200001, China
| | - Su-he Dong
- PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China
| | - Wen-hao Hu
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Qiao-ling Chen
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Shao-fu Zhang
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Kai Song
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Zhen-chuan Han
- PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China
| | - Meng-meng Li
- Department of Anesthesiology, The Fourth Medical Centre, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Zhi-tao Han
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023, Jiangsu, China
| | - Wei-bo Liu
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Xue-song Zhang
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| |
Collapse
|
9
|
Wang Y, Li X, Liu W, Sha J, Yu Z, Wang S, Ren H, Zhang W, Lee CS, Wang P. A dual organelle-targeting photosensitizer based on curcumin for enhanced photodynamic therapy. J Mater Chem B 2023; 11:10836-10844. [PMID: 37929670 DOI: 10.1039/d3tb01648j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The efficiency of photodynamic therapy (PDT) is related to the subcellular localization of photosensitizers (PSs) because organelles are associated with many fundamental life-sustaining activities. In this work, we synthesized a PS (CN) based on curcumin (CUR) and obtained enhanced PDT efficiency by simultaneously targeting lipid droplets (LDs) and the endoplasmic reticulum (ER). Compared with CUR, CN with a D-π-A-π-D structure possessed stronger intramolecular charge transfer features, resulting in longer absorption and emission wavelengths. In cell imaging experiments of CN using a confocal laser scanning microscope, a bright green emission in LDs and a weak orange emission in the ER were simultaneously observed due to its sensitivity to polarity. Surprisingly, CN with low singlet oxygen yields (0.13) exhibited an excellent photodynamic effect. Further experimental results showed that the phototoxicity of CN resulted in apoptosis by destroying the ER and ferroptosis by oxidizing polyunsaturated fatty acids (PUFAs) in LDs. This work paves the way for developing more effective photosensitizers with superior dual-targeting specificity.
Collapse
Affiliation(s)
- Yanping Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xuewei Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qingdao Casfuture Research Institute CO., LTD, P. R. China
| | - Jie Sha
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhe Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuai Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haohui Ren
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- Qingdao Casfuture Research Institute CO., LTD, P. R. China
| | - Wenjun Zhang
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong, P. R. China
| | - Chun-Sing Lee
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong, P. R. China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Huang Y, Li X, Zhang Z, Xiong L, Wang Y, Wen Y. Photodynamic Therapy Combined with Ferroptosis Is a Synergistic Antitumor Therapy Strategy. Cancers (Basel) 2023; 15:5043. [PMID: 37894410 PMCID: PMC10604985 DOI: 10.3390/cancers15205043] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/20/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Ferroptosis is a programmed death mode that regulates redox homeostasis in cells, and recent studies suggest that it is a promising mode of tumor cell death. Ferroptosis is regulated by iron metabolism, lipid metabolism, and intracellular reducing substances, which is the mechanism basis of its combination with photodynamic therapy (PDT). PDT generates reactive oxygen species (ROS) and 1O2 through type I and type II photochemical reactions, and subsequently induces ferroptosis through the Fenton reaction and the peroxidation of cell membrane lipids. PDT kills tumor cells by generating excessive cytotoxic ROS. Due to the limited laser depth and photosensitizer enrichment, the systemic treatment effect of PDT is not good. Combining PDT with ferroptosis can compensate for these shortcomings. Nanoparticles constructed by photosensitizers and ferroptosis agonists are widely used in the field of combination therapy, and their targeting and biological safety can be improved through modification. These nanoparticles not only directly kill tumor cells but also further exert the synergistic effect of PDT and ferroptosis by activating antitumor immunity, improving the hypoxia microenvironment, and inhibiting the tumor angiogenesis. Ferroptosis-agonist-induced chemotherapy and PDT-induced ablation also have good clinical application prospects. In this review, we summarize the current research progress on PDT and ferroptosis and how PDT and ferroptosis promote each other.
Collapse
Affiliation(s)
- Yunpeng Huang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.H.); (Z.Z.); (L.X.)
| | - Xiaoyu Li
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha 410011, China;
| | - Zijian Zhang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.H.); (Z.Z.); (L.X.)
| | - Li Xiong
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.H.); (Z.Z.); (L.X.)
| | - Yongxiang Wang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.H.); (Z.Z.); (L.X.)
| | - Yu Wen
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.H.); (Z.Z.); (L.X.)
| |
Collapse
|
11
|
Zhang X, Hu S, Huang L, Chen X, Wang X, Fu YN, Sun H, Li G, Wang X. Advance Progress in Assembly Mechanisms of Carrier-Free Nanodrugs for Cancer Treatment. Molecules 2023; 28:7065. [PMID: 37894544 PMCID: PMC10608994 DOI: 10.3390/molecules28207065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Nanocarriers have been widely studied and applied in the field of cancer treatment. However, conventional nanocarriers still suffer from complicated preparation processes, low drug loading, and potential toxicity of carriers themselves. To tackle the hindrance, carrier-free nanodrugs with biological activity have received increasing attention in cancer therapy. Extensive efforts have been made to exploit new self-assembly methods and mechanisms to expand the scope of carrier-free nanodrugs with enhanced therapeutic performance. In this review, we summarize the advanced progress and applications of carrier-free nanodrugs based on different types of assembly mechanisms and strategies, which involved noncovalent interactions, a combination of covalent bonds and noncovalent interactions, and metal ions-coordinated self-assembly. These carrier-free nanodrugs are introduced in detail according to their assembly and antitumor applications. Finally, the prospects and existing challenges of carrier-free nanodrugs in future development and clinical application are discussed. We hope that this comprehensive review will provide new insights into the rational design of more effective carrier-free nanodrug systems and advancing clinical cancer and other diseases (e.g., bacterial infections) infection treatment.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuyang Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lifei Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiyue Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ya-nan Fu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hui Sun
- Department of Hepatology, Tongliao Infectious Disease Hospital, Tongliao 028000, China
- Department of Interventional Ultrasound, PLA Medical College & Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
12
|
Hu Q, Zhu W, Du J, Ge H, Zheng J, Long S, Fan J, Peng X. A GPX4-targeted photosensitizer to reverse hypoxia-induced inhibition of ferroptosis for non-small cell lung cancer therapy. Chem Sci 2023; 14:9095-9100. [PMID: 37655031 PMCID: PMC10466276 DOI: 10.1039/d3sc01597a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
Ferroptosis therapy is gradually becoming a new strategy for the treatment of non-small cell lung cancer (NSCLC) because of its active iron metabolism. Because the hypoxic microenvironment in NSCLC inhibits ferroptosis heavily, the therapeutic effect of some ferroptosis inducers is severely limited. To address this issue, this work describes a promising photosensitizer ENBS-ML210 and its application against hypoxia of NSCLC treatment based on type I photodynamic therapy and glutathione peroxidase 4 (GPX4)-targeted ferroptosis. ENBS-ML210 can promote lipid peroxidation and reduce GPX4 expression by generating superoxide anion radicals under 660 nm light irradiation, which reverses the hypoxia-induced resistance of ferroptosis and effectively kills H1299 tumor cells. Finally, the excellent synergistic antitumor effects are confirmed both in vitro and in vivo. We firmly believe that this method will provide a new direction for the clinical treatment of NSCLC in the future.
Collapse
Affiliation(s)
- Qiao Hu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Wanjie Zhu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology 26 Yucai Road, Jiangbei District Ningbo 315016 P. R. China
| | - Haoying Ge
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Jiazhu Zheng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology 26 Yucai Road, Jiangbei District Ningbo 315016 P. R. China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology 26 Yucai Road, Jiangbei District Ningbo 315016 P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
| |
Collapse
|
13
|
Wang H, Qiao C, Guan Q, Wei M, Li Z. Nanoparticle-mediated synergistic anticancer effect of ferroptosis and photodynamic therapy: Novel insights and perspectives. Asian J Pharm Sci 2023; 18:100829. [PMID: 37588992 PMCID: PMC10425855 DOI: 10.1016/j.ajps.2023.100829] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/05/2023] [Accepted: 07/02/2023] [Indexed: 08/18/2023] Open
Abstract
Current antitumor monotherapy has many limitations, highlighting the need for novel synergistic anticancer strategies. Ferroptosis is an iron-dependent form of nonapoptotic cell death that plays a pivotal regulatory role in tumorigenesis and treatment. Photodynamic therapy (PDT) causes irreversible chemical damage to target lesions and is widely used in antitumor therapy. However, PDT's effectiveness is usually hindered by several obstacles, such as hypoxia, excess glutathione (GSH), and tumor resistance. Ferroptosis improves the anticancer efficacy of PDT by increasing oxygen and reactive oxygen species (ROS) or reducing GSH levels, and PDT also enhances ferroptosis induction due to the ROS effect in the tumor microenvironment (TME). Strategies based on nanoparticles (NPs) can subtly exploit the potential synergy of ferroptosis and PDT. This review explores recent advances and current challenges in the landscape of the underlying mechanisms regulating ferroptosis and PDT, as well as nano delivery system-mediated synergistic anticancer activity. These include polymers, biomimetic materials, metal organic frameworks (MOFs), inorganics, and carrier-free NPs. Finally, we highlight future perspectives of this novel emerging paradigm in targeted cancer therapies.
Collapse
Affiliation(s)
- Haiying Wang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Chu Qiao
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qiutong Guan
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Zhenhua Li
- School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|