1
|
Chen S, Wu Z, Huang Z, Liang C, Lee SJ. Implantable Dental Barrier Membranes as Regenerative Medicine in Dentistry: A Comprehensive Review. Tissue Eng Regen Med 2025; 22:527-549. [PMID: 39992621 PMCID: PMC12122982 DOI: 10.1007/s13770-025-00704-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/30/2024] [Accepted: 01/14/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Periodontitis and bone loss in the maxillofacial and dental areas pose considerable challenges for both functional and aesthetic outcomes. To date, implantable dental barrier membranes, designed to prevent epithelial migration into defects and create a favorable environment for targeted cells, have garnered significant interest from researchers. Consequently, a variety of materials and fabrication methods have been explored in extensive research on regenerative dental barrier membranes. METHODS This review focuses on dental barrier membranes, summarizing the various biomaterials used in membrane manufacturing, fabrication methods, and state-of-the-art applications for dental tissue regeneration. Based on a discussion of the pros and cons of current membrane strategies, future research directions for improved membrane designs are proposed. RESULTS AND CONCLUSION To endow dental membranes with various biological properties that accommodate different clinical situations, numerous biomaterials and manufacturing methods have been proposed. These approaches provide theoretical support and hold promise for advancements in dental tissue regeneration.
Collapse
Affiliation(s)
- Siyuan Chen
- Biofunctional Materials, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, People's Republic of China
| | - Zhenzhen Wu
- Biofunctional Materials, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, People's Republic of China
| | - Ziqi Huang
- Biofunctional Materials, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, People's Republic of China
| | - Chao Liang
- Biofunctional Materials, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, People's Republic of China
| | - Sang Jin Lee
- Biofunctional Materials, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
2
|
Agnes CJ, Li L, Bertrand D, Murshed M, Willie BM, Tabrizian M. Assessment of bone regeneration potential for a 6-bromoindirubin-3'-oxime (BIO) encapsulated chitosan based scaffold in a mouse critical sized bone defect model. Int J Biol Macromol 2025; 304:140995. [PMID: 39952511 DOI: 10.1016/j.ijbiomac.2025.140995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/10/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Development of an effective treatment to guide bone repair in critical size bone defect applications remains a major unmet challenge. Current clinical gold standards display significant disadvantages, thereby necessitating that research focus on designing and producing a suitable alternative for healing. In this study, we comprehensively assessed the bone regenerative potential of a newly formulated 6-Bromoindirubin-3'-Oxime (BIO) incorporated chitosan-based scaffold using a mouse femoral defect model. Live 3D in vivo micro-CT imaging enabled us to monitor the progression of bone formation over 56 days, without needing additional replicates. Results demonstrated smaller distances between bone ends (1.033 ± 0.512 mm) compared to controls (1.474 ± 0.465 mm) at later timepoints (p = 0.0430), suggesting improved bone formation. This observed effect was supported with serum procollagen type I N-propeptide levels, where BIO scaffolds showed marked increases in collagen synthesis. As vascularization is often-overlooked, blood vessel density at 56 days was also assessed, showing an additional benefit of BIO incorporated scaffolds (9.264 ± 0.578) over controls (6.667 ± 1.300) on angiogenesis. Although BIO's incorporation did not lead to bony bridging or a significant difference in bone volume compared to controls at day 56, our findings suggest the BIO incorporated scaffold's ability to improve healing outcomes through enhancement of Wnt signaling. Further studies aimed at optimizing the dose to target this pathway are warranted, as a means to more completely regenerate bone in challenging healing scenarios.
Collapse
Affiliation(s)
- Celine J Agnes
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada; Shriners Hospital for Children, Montreal, QC, Canada.
| | - Ling Li
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
| | - David Bertrand
- Shriners Hospital for Children, Montreal, QC, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
| | - Monzur Murshed
- Shriners Hospital for Children, Montreal, QC, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada.
| | - Bettina M Willie
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada; Shriners Hospital for Children, Montreal, QC, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada.
| | - Maryam Tabrizian
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada.
| |
Collapse
|
3
|
Carreño-Márquez IJA, Balandrán-Quintana RR, Azamar-Barrios JA, Mendoza-Wilson AM, Ramos-Clamont Montfort G, Castro-Enríquez DD. Factors behind the spontaneous synthesis of spherical brushite from wheat bran aqueous extract: The role of zinc. Biointerphases 2025; 20:011007. [PMID: 40008927 DOI: 10.1116/6.0004184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Coprecipitation biomineralization was induced using nondialyzed and dialyzed aqueous wheat bran extracts as scaffolds, to which zinc (Zn) was added in a 0%-15% concentration range. Spherical particles of brushite were precipitated up to 3% Zn concentration in the nondialyzed extracts. At 5% and 10% Zn, spherical or spheroidal brushite particles were precipitated, but the internal microstructure changed from stacked plates to laid parallel strands; a secondary weddellite phase was formed. Brushite with 0.018% Zn content was formed even without external additions due to the natural presence of Zn in the nondialyzed extracts. The Zn content of doped brushite particles was between 0.74% and 1% by weight for the 3%-10% added Zn range. Higher concentrations of Zn inhibited crystal growth. In dialyzed extracts, brushite spherical particles were formed only without added external Zn. However, crystal morphology was very similar, and the radial arrangement was maintained. Amorphous material with varied elemental composition precipitated only when Zn was added to the dialyzed extracts. Lattice parameters of brushite were close to those found in the literature, with minor variations for b and c. The results show the evidence of the role of Zn in the spherical morphology of brushite.
Collapse
Affiliation(s)
- Iván Jalil Antón Carreño-Márquez
- Centro de Investigación en Alimentación y Desarrollo, A.C., Coordinación de Tecnología de Alimentos de Origen Vegetal, Carretera Gustavo Enrique Astiazarán Rosas No. 46, Hermosillo, Sonora 83304, México
| | - René Renato Balandrán-Quintana
- Centro de Investigación en Alimentación y Desarrollo, A.C., Coordinación de Tecnología de Alimentos de Origen Vegetal, Carretera Gustavo Enrique Astiazarán Rosas No. 46, Hermosillo, Sonora 83304, México
| | - José Antonio Azamar-Barrios
- Centro de Investigación y Estudios Avanzados del IPN, Unidad Mérida, Departamento de Física Aplicada, Carretera antigua a Progreso Km 6, Mérida, Yucatán 97310, México
| | - Ana María Mendoza-Wilson
- Centro de Investigación en Alimentación y Desarrollo, A.C., Coordinación de Tecnología de Alimentos de Origen Vegetal, Carretera Gustavo Enrique Astiazarán Rosas No. 46, Hermosillo, Sonora 83304, México
| | - Gabriela Ramos-Clamont Montfort
- Centro de Investigación en Alimentación y Desarrollo, A.C., Coordinación de Ciencia de los Alimentos, Carretera Gustavo Enrique Astiazarán Rosas No. 46, Hermosillo, Sonora 83304, México
| | - Daniela Denisse Castro-Enríquez
- Centro de Investigación en Alimentación y Desarrollo, A.C., Coordinación de Tecnología de Alimentos de Origen Vegetal, Carretera Gustavo Enrique Astiazarán Rosas No. 46, Hermosillo, Sonora 83304, México
| |
Collapse
|
4
|
Gan Z, Liu H, Qin X, Wang K, Li X, Xie F, Qin J. Microfluidic-Assisted Pneumatic Droplet Generators Designed for Multiscenario Biomanufacturing with Favorable Biocompatibility and Extendibility. ACS Biomater Sci Eng 2024; 10:6721-6733. [PMID: 39231535 DOI: 10.1021/acsbiomaterials.4c01135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Droplets, tiny liquid compartments, are increasingly emerging in the biomedical and biomanufacturing fields due to their unique properties to serve as templates or independent reaction units. Currently, the straightforward and efficient generation of various functional droplets in a biofriendly manner remains challenging. Herein, a novel microfluidic-assisted pneumatic strategy is described for the customizable and high-throughput production of monodispersed droplets, and the droplet size can be precisely controlled via a simplified gas pressure regulation module. In particular, numerous uniform alginate microcarriers can be rapidly fabricated in an all-aqueous manner, wherein the encapsulated islet or liver cells exhibit favorable viability and biological functions. Furthermore, by changing the microchannel configuration, several fluid manipulation functions developed by microfluidic technology, such as mixing and laminar flow, can be successfully incorporated into this platform. The droplet generators with scalable functionality are demonstrated in many biomanufacturing scenarios, including on-demand distribution of cell-mimetic particles, continuous synthesis of biomedical metal-organic framework (MOF), controllable preparation of compartmental microgel, etc. These may provide sustainable inspiration for developing droplet generators and their applications in tissue and organ engineering, biomaterials design, bioprinting nozzles, and other fields.
Collapse
Affiliation(s)
- Zhongqiao Gan
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haitao Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinyuan Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaituo Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiang Li
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, China
| | - Fuwei Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| |
Collapse
|
5
|
Yanagisawa T, Hayashi K, Tsuchiya A, Kishida R, Ishikawa K. In vivo trial of bioresorbable mesh cages contained bone graft granules in rabbit femoral bone defects. Sci Rep 2024; 14:12449. [PMID: 38816454 PMCID: PMC11139951 DOI: 10.1038/s41598-024-63067-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024] Open
Abstract
Bone graft granules implanted in bone defects come into physical contact with the host bone and form interconnected porous structure. However, there exists an accidental displacement of granules to unintended locations and leakage of granules from bone defects. Although covering the defect with a barrier membrane prevents granule emanation, this procedure is troublesome. To resolve these problems, we fabricated bioresorbable mesh cages (BRMc) in this study. Bone graft granules composed of carbonate apatite alone (Gr) and bioresorbable mesh cages (BRMc/Gr) introduced the bone graft granules and were implanted into the bone defect in the rabbit femur. Micro-computed tomography and histological analysis were conducted at 4 and 12 weeks after implantation. Osteoprogenitors in the bloodstream from the host bone passed through the pores of BRMc, penetrated the porous structure of graft granules, and might interact with individual granules. Then bone remodeling could progress actively and new bone was formed. The new bone formation was similar to the host bone at 12 weeks and there were minimal signs of local tissue inflammation. BRMc/Gr could reduce the risk of unwanted new bone formation occurring due to loss of granules from the bone defects compared with Gr because BRMc enclosed granules and prevent granules leakage from bone defects and BRMc could not induce unfavorable effects to forme new bone. Additionally, BRMc/Gr could keep granules assembled in one place, avoid displacement of granules to unintended locations, and carry easily. These results demonstrated that BRMc/Gr was effective in bone regeneration and improved clinical handling.
Collapse
Affiliation(s)
- Toshiki Yanagisawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akira Tsuchiya
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ryo Kishida
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
6
|
Sun X, Li Z, Wang X, He J, Wu Y. Inorganic Phosphate as "Bioenergetic Messenger" Triggers M2-Type Macrophage Polarization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306062. [PMID: 38247159 PMCID: PMC10987138 DOI: 10.1002/advs.202306062] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/12/2024] [Indexed: 01/23/2024]
Abstract
The effects of calcium phosphate (CaP) materials on macrophage polarization state vary with their physicochemical properties. The study aims to elucidate the impact of phosphate ion-mediated energy metabolism on M2 macrophage polarization and the corresponding regulatory mechanism. The phosphate ions released from CaP ceramic as bioenergetic factor is identified; its concentration is closely associated with the polarized state. After being taken up by the sodium-dependent phosphate transporter 1, extracellular phosphate ions produce energy via oxidative phosphorylation by facilitating tricarboxylic acid flux, thereby contributing to M2 macrophage polarization. Further mechanistic analysis reveals that the elevation of the bioenergetic basis can drive macrophage M2 polarization via the AMP-activated protein kinase-mammalian target of rapamycin (AMPK-mTOR) axis. Another regulatory effect is that of the adenosine triphosphate (ATP), a signaling molecule. Intracellular ATP is released into the extracellular space and degraded to adenosine, which serves as a signaling molecule through the A2b adenosine receptor to activate the cyclic adenosine monophosphate (cAMP) pathway, thereby promoting M2 macrophage polarization. Overall, these findings may transform the existing knowledge on cell metabolism and energy homeostasis from bystanders to pivotal factors guiding M2 macrophage polarization and have implications for the future design of biomimetic CaP scaffolds.
Collapse
Affiliation(s)
- Xiaoqing Sun
- National Engineering Research Center for BiomaterialsSichuan UniversityChengduSichuan610064P. R. China
| | - Zhiyu Li
- National Engineering Research Center for BiomaterialsSichuan UniversityChengduSichuan610064P. R. China
| | - Xiang Wang
- National Engineering Research Center for BiomaterialsSichuan UniversityChengduSichuan610064P. R. China
| | - Jing He
- National Engineering Research Center for BiomaterialsSichuan UniversityChengduSichuan610064P. R. China
| | - Yao Wu
- National Engineering Research Center for BiomaterialsSichuan UniversityChengduSichuan610064P. R. China
| |
Collapse
|
7
|
Ma C, Wang T, Jin X, Zhang W, Lv Q. Lineage-specific multifunctional double-layer scaffold accelerates the integrated regeneration of cartilage and subchondral bone. Mater Today Bio 2023; 23:100800. [PMID: 37766897 PMCID: PMC10520449 DOI: 10.1016/j.mtbio.2023.100800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Repairing cartilage/subchondral bone defects that involve subchondral bone is a major challenge in clinical practice. Overall, the integrated repair of the structure and function of the osteochondral (OC) unit is very important. Some studies have demonstrated that the differentiation of cartilage is significantly enhanced by reducing the intake of nutrients such as lipids. This study demonstrates that using starvation can effectively optimize the therapeutic effect of bone marrow mesenchymal stem cells (BMSCs)-derived extracellular vesicles (EVs). A hyaluronic acid (HA)-based hydrogel containing starved BMSCs-EVs displayed continuous release for more than 3 weeks and significantly promoted the proliferation and biosynthesis of chondrocytes around the defect regulated by the forkhead-box class O (FOXO) pathway. When combined with vascular inhibitors, the hydrogel inhibited cartilage hypertrophy and facilitated the regeneration of hyaline cartilage. A porous methacrylate gelatine (GelMA)-based hydrogel containing calcium salt loaded with thrombin rapidly promoted haematoma formation upon contact with the bone marrow cavity to quickly block the pores and prevent the blood vessels in the bone marrow cavity from invading the cartilage layer. Furthermore, the haematoma could be used as nutrients to accelerate bone survival. The in vivo experiments demonstrated that the multifunctional lineage-specific hydrogel promoted the integrated regeneration of cartilage/subchondral bone. Thus, this hydrogel may represent a new strategy for osteochondral regeneration and repair.
Collapse
Affiliation(s)
- Chunhui Ma
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Tao Wang
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Xinmeng Jin
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Wanglin Zhang
- Department of Orthopaedics, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qi Lv
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| |
Collapse
|
8
|
Niu Y, Chen L, Wu T. Recent Advances in Bioengineering Bone Revascularization Based on Composite Materials Comprising Hydroxyapatite. Int J Mol Sci 2023; 24:12492. [PMID: 37569875 PMCID: PMC10419613 DOI: 10.3390/ijms241512492] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/18/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
The natural healing process of bone is impaired in the presence of tumors, trauma, or inflammation, necessitating external assistance for bone regeneration. The limitations of autologous/allogeneic bone grafting are still being discovered as research progresses. Bone tissue engineering (BTE) is now a crucial component of treating bone injuries and actively works to promote vascularization, a crucial stage in bone repair. A biomaterial with hydroxyapatite (HA), which resembles the mineral makeup of invertebrate bones and teeth, has demonstrated high osteoconductivity, bioactivity, and biocompatibility. However, due to its brittleness and porosity, which restrict its application, scientists have been prompted to explore ways to improve its properties by mixing it with other materials, modifying its structural composition, improving fabrication techniques and growth factor loading, and co-cultivating bone regrowth cells to stimulate vascularization. This review scrutinizes the latest five-year research on HA composite studies aimed at amplifying vascularization in bone regeneration.
Collapse
Affiliation(s)
- Yifan Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lei Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Tianfu Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
9
|
Mesenchymal Stem Cells and Their Exocytotic Vesicles. Int J Mol Sci 2023; 24:ijms24032085. [PMID: 36768406 PMCID: PMC9916886 DOI: 10.3390/ijms24032085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Mesenchymal stem cells (MSCs), as a kind of pluripotent stem cells, have attracted much attention in orthopedic diseases, geriatric diseases, metabolic diseases, and sports functions due to their osteogenic potential, chondrogenic differentiation ability, and adipocyte differentiation. Anti-inflammation, anti-fibrosis, angiogenesis promotion, neurogenesis, immune regulation, and secreted growth factors, proteases, hormones, cytokines, and chemokines of MSCs have been widely studied in liver and kidney diseases, cardiovascular and cerebrovascular diseases. In recent years, many studies have shown that the extracellular vesicles of MSCs have similar functions to MSCs transplantation in all the above aspects. Here we review the research progress of MSCs and their exocrine vesicles in recent years.
Collapse
|