1
|
He Y, Tian J, Li F, Peng W, He Y. Revealing the Surface Topography Influence and Fundamental Operating Mechanism on Semiconductor-Semiconductor-Based Tribovoltaic Effect. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4605-4615. [PMID: 39960187 DOI: 10.1021/acs.langmuir.4c04425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Tribovoltaic effect is an emerging phenomenon occurring between two materials, which can generate direct current (DC) rather than alternate current (AC) at the contact interface. Though the existence of a tribovoltaic effect indeed brings up a new method for power supply of critical sensors using the Internet of Things technology, the wear and damage of tribovoltaic materials related to the surface topography during the sliding process is still nonnegligible. In this work, the influence of surface topography on the tribovoltaic effect between semiconductors is investigated by means of a lateral sliding mode triboelectric nanogenerator composed of ZnO and Si (ZnO/Si LS-TENG). Results show that the increase of effective area has a great improvement on the output of the tribovoltaic effect. In addition, a novel operating mechanism and theoretical model based on the energy band theory are proposed to illustrate the semiconductor-semiconductor tribovoltaic effect clearly.
Collapse
Affiliation(s)
- Yue He
- School of Microelectronics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
- The Key Laboratory of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an 710049, Shaanxi, China
| | - Jia Tian
- School of Microelectronics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
- The Key Laboratory of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an 710049, Shaanxi, China
| | - Fangpei Li
- School of Microelectronics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
- The Key Laboratory of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an 710049, Shaanxi, China
| | - Wenbo Peng
- School of Microelectronics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
- The Key Laboratory of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an 710049, Shaanxi, China
| | - Yongning He
- School of Microelectronics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
- The Key Laboratory of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an 710049, Shaanxi, China
| |
Collapse
|
2
|
Gong L, Zhang Z, Yu W, Zeng J, Cao J, Fan B, Zhao J, Zhang C. Ultra-Durable Polysilicon Based Tribovoltaic Nanogenerators for Bearing In Situ Rotational Speed Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405992. [PMID: 39324289 DOI: 10.1002/smll.202405992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/10/2024] [Indexed: 09/27/2024]
Abstract
Tribovoltaic nanogenerator (TVNG) is an emerging energy device with the advantages of direct current and high power density. At present, many TVNGs are based on single-crystal materials, which are expensive and fragile during structural processing. Here, a polysilicon-based TVNG for bearing in situ rotational speed sensing is developed, which has the same level of performance and lower cost compared to monocrystalline silicon. The defects in polysilicon can provide additional carriers, but the grain boundaries can suppress the transport process of carriers, resulting in almost the same electrical output as single crystals. The oiled sliding mode TVNG has an impressive durability of up to 1 million cycles. The friction coefficient of rolling mode TVNG is as low as 0.14. Based on rolling mode polysilicon TVNG, the tapered roller bearing, thrust ball bearing, and deep groove ball bearing are manufactured by cutting and engraving processes. Moreover, their short-circuit current and open-circuit voltage are linear with speed, and the fitting coefficient is as high as 0.99, providing favorable conditions for in situ rotational speed sensing. This work presents a structure-function integrated bearing design methodology, demonstrating the considerable potential of in situ sensing for intelligent components in the industrial Internet of Things.
Collapse
Affiliation(s)
- Likun Gong
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Guangzhou Institute of Blue Energy, Knowledge City, Huangpu, Guangzhou, 510555, China
| | - Zhi Zhang
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Guangzhou Institute of Blue Energy, Knowledge City, Huangpu, Guangzhou, 510555, China
| | - Wenbo Yu
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jianhua Zeng
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jie Cao
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Beibei Fan
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Junqing Zhao
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Guangzhou Institute of Blue Energy, Knowledge City, Huangpu, Guangzhou, 510555, China
| | - Chi Zhang
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Guangzhou Institute of Blue Energy, Knowledge City, Huangpu, Guangzhou, 510555, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| |
Collapse
|
3
|
He Y, Tian J, Li F, Peng W, He Y. Evolution of Tribotronics: From Fundamental Concepts to Potential Uses. MICROMACHINES 2024; 15:1259. [PMID: 39459133 PMCID: PMC11509801 DOI: 10.3390/mi15101259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024]
Abstract
The intelligent sensing network is one of the key components in the construction of the Internet of Things, and the power supply technology of sensor communication nodes needs to be solved urgently. As a new field combining tribo-potential with semiconductor devices, tribotronics, based on the contact electrification (CE) effect, realizes direct interaction between the external environment and semiconductor devices by combining triboelectric nanogenerator (TENG) and field-effect transistor (FET), further expanding the application prospects of micro/nano energy. In this paper, the research progress of tribotronics is systematically reviewed. Firstly, the mechanism of the CE effect and the working principles of TENG are introduced. Secondly, the regulation theory of tribo-potential on carrier transportation in semiconductor devices and the research status of tribotronic transistors are summarized. Subsequently, the applications of tribotronics in logic circuits and memory devices, smart sensors, and artificial synapses in recent years are demonstrated. Finally, the challenges and development prospects of tribotronics in the future are projected.
Collapse
Affiliation(s)
- Yue He
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Jia Tian
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Fangpei Li
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Wenbo Peng
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Yongning He
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| |
Collapse
|
4
|
Yu R, Feng S, Sun Q, Xu H, Jiang Q, Guo J, Dai B, Cui D, Wang K. Ambient energy harvesters in wearable electronics: fundamentals, methodologies, and applications. J Nanobiotechnology 2024; 22:497. [PMID: 39164735 PMCID: PMC11334586 DOI: 10.1186/s12951-024-02774-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
In recent years, wearable sensor devices with exceptional portability and the ability to continuously monitor physiological signals in real time have played increasingly prominent roles in the fields of disease diagnosis and health management. This transformation has been largely facilitated by materials science and micro/nano-processing technologies. However, as this technology continues to evolve, the demand for multifunctionality and flexibility in wearable devices has become increasingly urgent, thereby highlighting the problem of stable and sustainable miniaturized power supplies. Here, we comprehensively review the current mainstream energy technologies for powering wearable sensors, including batteries, supercapacitors, solar cells, biofuel cells, thermoelectric generators, radio frequency energy harvesters, and kinetic energy harvesters, as well as hybrid power systems that integrate multiple energy conversion modes. In addition, we consider the energy conversion mechanisms, fundamental characteristics, and typical application cases of these energy sources across various fields. In particular, we focus on the crucial roles of different materials, such as nanomaterials and nano-processing techniques, for enhancing the performance of devices. Finally, the challenges that affect power supplies for wearable electronic products and their future developmental trends are discussed in order to provide valuable references and insights for researchers in related fields.
Collapse
Affiliation(s)
- Ruoyao Yu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaoqing Feng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qingwen Sun
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Xu
- School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qixia Jiang
- Department of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Jinhong Guo
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Dai
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Daxiang Cui
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kan Wang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
5
|
Zhang Z, Wu N, Gong L, Luan R, Cao J, Zhang C. An Ultrahigh Power Density and Ultralow Wear GaN-Based Tribovoltaic Nanogenerator for Sliding Ball Bearing as Self-Powered Wireless Sensor Node. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310098. [PMID: 38035636 DOI: 10.1002/adma.202310098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/21/2023] [Indexed: 12/02/2023]
Abstract
The tribovoltaic effect is regarded as a newly discovered semiconductor effect for mechanical-to-electrical energy conversion. However, tribovoltaic nanogenerators (TVNGs) are widely limited by low output power and poor wear resistance for device integration and application. Here, this work invents a TVNG using a ball-on-disk structure composed of gallium nitride (GaN) and steel ball. It exhibits an open-circuit voltage exceeding 130 V and an ultrahigh normalized average power density of 24.6 kW m-2 Hz-1 , which is a 282-fold improvement compared to previous works. Meanwhile, this TVNG reaches an ultralow wear rate of 5 × 10-7 mm3 N-1 m-1 at a maximum contact pressure of 906.6 MPa, surpassing the TVNG composed of Si by three orders of magnitude due to the local concentrated injection of frictional energy. Based on the TVNG, this work constructs the first tribovoltaic bearing and achieves sensing signal transmission within 16 s (300 rpm) by integrating a management circuit, a transmission module, a relay, and receiving terminals, which enables the monitoring of ambient pressure and temperature. This work realizes a GaN-based TVNG with high-performance and low wear simultaneously, demonstrating great potential for intelligent components and self-powered sensor nodes in the industrial Internet of Things.
Collapse
Affiliation(s)
- Zhi Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ning Wu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Likun Gong
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ruifei Luan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jie Cao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang, 212013, China
| | - Chi Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
6
|
Xia J, Berbille A, Luo X, Li J, Wang Z, Zhu L, Wang ZL. Reversal in Output Current Direction of 4H-SiC/Cu Tribovoltaic Nanogenerator as Controlled by Relative Humidity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305303. [PMID: 37658494 DOI: 10.1002/smll.202305303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/03/2023] [Indexed: 09/03/2023]
Abstract
Tribovoltaic nanogenerators (TVNG) represent a fantastic opportunity for developing low-frequency energy harvesting and self-powered sensing, by exploiting their real-time direct-current (DC) output. Here, a thorough study of the effect of relative humidity (RH) on a TVNG consisting of 4H-SiC (n-type) and metallic copper foil (SM-TVNG) is presented. The SM-TVNG shows a remarkable sensitivity to RH and an abnormal RH dependence. When RH increases from ambient humidity up to 80%, an increasing electrical output is observed. However, when RH rises from 80% to 98%, the signal output not only decreases, but its direction reverses as it crosses 90% RH. This behavior differs greatly from that of a Si-based TVNG, whose output constantly increases with RH. The behavior of the SM-TVNG might result from the competition between the built-in electric field induced by metal-semiconductor contact and a strong triboelectric electric field induced by solid-liquid triboelectrification under high RH. The authors also demonstrated that both SM-TVNG and Si-based TVNG can work effectively as-is even fully submerged in deionized water. This mechanism can affect other devices and be applied to design self-powered sensors working under high RH or underwater.
Collapse
Affiliation(s)
- Jinchao Xia
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Andy Berbille
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiongxin Luo
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Jiayu Li
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Ziming Wang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Laipan Zhu
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
- Yonsei Frontier Lab, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
7
|
Qiao W, Zhou L, Zhao Z, Yang P, Liu D, Liu X, Liu J, Liu D, Wang ZL, Wang J. MXene Lubricated Tribovoltaic Nanogenerator with High Current Output and Long Lifetime. NANO-MICRO LETTERS 2023; 15:218. [PMID: 37804464 PMCID: PMC10560292 DOI: 10.1007/s40820-023-01198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/27/2023] [Indexed: 10/09/2023]
Abstract
Tribovoltaic nanogenerators (TVNGs) have the characteristics of high current density, low matched impedance and continuous output, which is expected to solve the problem of power supply for small electronic devices. However, wear occurrence in friction interface will seriously reduce the performance of TVNGs as well as lifetime. Here, we employ MXene solution as lubricate to improve output current density and lifetime of TVNG simultaneously, where a high value of 754 mA m-2 accompanied with a record durability of 90,000 cycles were achieved. By comparing multiple liquid lubricates with different polarity, we show that conductive polar liquid with MXene as additive plays a crucial role in enhancing the electrical output performance and durability of TVNG. Moreover, the universality of MXene solution is well demonstrated in various TVNGs with Cu and P-type Si, and Cu and N-GaAs as material pairs. This work may guide and accelerates the practical application of TVNG in future.
Collapse
Affiliation(s)
- Wenyan Qiao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Linglin Zhou
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhihao Zhao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Peiyuan Yang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
| | - Di Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiaoru Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jiaqi Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
| | - Dongyang Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jie Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China.
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
8
|
Long Y, Liu Z, Ayazi F. 4H-Silicon Carbide as an Acoustic Material for MEMS. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1189-1200. [PMID: 37276110 DOI: 10.1109/tuffc.2023.3282920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This article discusses the potential of 4H-silicon carbide (SiC) as a superior acoustic material for microelectromechanical systems (MEMS), particularly for high-performance resonator and extreme environments applications. Through a comparison of the crystalline structure along with the mechanical, acoustic, electrical, and thermal properties of 4H with respect to other SiC polytypes and silicon, it is shown that 4H-SiC possesses salient properties for MEMS applications, including its transverse isotropy and small phonon scattering dissipation. The utility and implementation of bonded SiC on insulator (4H-SiCOI) substrates as an emerging MEMS technology platform are presented. Additionally, this article reports on the temperature-dependent mechanical properties of 4H-SiC, including the temperature coefficient of frequency (TCF) and quality factor ( Q -factor) for Lamé mode resonators. Finally, the 4H-SiC MEMS fabrication including its deep reactive ion etching is discussed. This article provides valuable insights into the potential of 4H-SiC as a mechanoacoustic material and provides a foundation for future research in the field.
Collapse
|