1
|
Zhang J, Xu X, Zhao G, You H, Wang R, Li F. Hydrogenation of Quinones to Hydroquinones under Atmospheric Pressure Catalyzed by a Metal-Ligand Bifunctional Iridium Catalyst. Org Lett 2024; 26:1857-1862. [PMID: 38407095 DOI: 10.1021/acs.orglett.4c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
A general method for the hydrogenation of quinones to hydroquinones under atmospheric pressure has been developed. In the presence of [Cp*Ir(2,2'-bpyO)(H2O)] (0.5-1 mol %), a range of products were obtained in high yields. Furthemore, the expansion of this catalytic system to the hydrogenation of 1,4-benzoquinone diimines was also presented. Functional groups in the bpy ligand were found to be crucial for the catalytic activity of iridium complexes.
Collapse
Affiliation(s)
- Jin Zhang
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Xiangchao Xu
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Guoqiang Zhao
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Heng You
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Rongzhou Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Feng Li
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
2
|
Sakakibara N, Shizuno M, Kanazawa T, Kato K, Yamakata A, Nozawa S, Ito T, Terashima K, Maeda K, Tamaki Y, Ishitani O. Surface-Specific Modification of Graphitic Carbon Nitride by Plasma for Enhanced Durability and Selectivity of Photocatalytic CO 2 Reduction with a Supramolecular Photocatalyst. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13205-13218. [PMID: 36857173 PMCID: PMC10020964 DOI: 10.1021/acsami.3c00955] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Photocatalytic CO2 reduction is in high demand for sustainable energy management. Hybrid photocatalysts combining semiconductors with supramolecular photocatalysts represent a powerful strategy for constructing visible-light-driven CO2 reduction systems with strong oxidation power. Here, we demonstrate the novel effects of plasma surface modification of graphitic carbon nitride (C3N4), which is an organic semiconductor, to achieve better affinity and electron transfer at the interface of a hybrid photocatalyst consisting of C3N4 and a Ru(II)-Ru(II) binuclear complex (RuRu'). This plasma treatment enabled the "surface-specific" introduction of oxygen functional groups via the formation of a carbon layer, which worked as active sites for adsorbing metal-complex molecules with methyl phosphonic-acid anchoring groups onto the plasma-modified surface of C3N4. Upon photocatalytic CO2 reduction with the hybrid under visible-light irradiation, the plasma-surface-modified C3N4 with RuRu' enhanced the durability of HCOOH production by three times compared to that achieved when using a nonmodified system. The high selectivity of HCOOH production against byproduct evolution (H2 and CO) was improved, and the turnover number of HCOOH production based on the RuRu' used reached 50 000, which is the highest among the metal-complex/semiconductor hybrid systems reported thus far. The improved activity is mainly attributed to the promotion of electron transfer from C3N4 to RuRu' under light irradiation via the accumulation of electrons trapped in deep defect sites on the plasma-modified surface of C3N4.
Collapse
Affiliation(s)
- Noritaka Sakakibara
- Department
of Chemistry, School of Science, Tokyo Institute
of Technology, 2-12-1-NE-2 Ookayama, Meguro, Tokyo 152-8550, Japan
- Japan
Society for the Promotion of Science, Kojimachi
Business Center Building, 5-3-1 Kojimachi, Chiyoda, Tokyo 102-0083, Japan
| | - Mitsuhiko Shizuno
- Department
of Chemistry, School of Science, Tokyo Institute
of Technology, 2-12-1-NE-2 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Tomoki Kanazawa
- Japan
Society for the Promotion of Science, Kojimachi
Business Center Building, 5-3-1 Kojimachi, Chiyoda, Tokyo 102-0083, Japan
- Institute
of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
| | - Kosaku Kato
- Faculty
of Natural Science and Technology, Okayama
University, 3-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Akira Yamakata
- Faculty
of Natural Science and Technology, Okayama
University, 3-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Shunsuke Nozawa
- Institute
of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
| | - Tsuyohito Ito
- Department
of Advanced Materials Science, Graduate
School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Kazuo Terashima
- Department
of Advanced Materials Science, Graduate
School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Kazuhiko Maeda
- Department
of Chemistry, School of Science, Tokyo Institute
of Technology, 2-12-1-NE-2 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Yusuke Tamaki
- Department
of Chemistry, School of Science, Tokyo Institute
of Technology, 2-12-1-NE-2 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Osamu Ishitani
- Department
of Chemistry, School of Science, Tokyo Institute
of Technology, 2-12-1-NE-2 Ookayama, Meguro, Tokyo 152-8550, Japan
- Department
of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
3
|
Inoue K, Ito T, Shimizu Y, Ito K, Terashima K. Cross-Linking-Filler Composite Materials of Functionalized Hexagonal Boron Nitride and Polyrotaxane Elastomer. ACS Macro Lett 2023; 12:48-53. [PMID: 36562729 DOI: 10.1021/acsmacrolett.2c00636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study demonstrates cross-linking-filler composites in which covalent bonds between the fillers and polymer chains act as the main cross-linking points for the development of flexible and thermally conductive materials. Cross-linking-filler composites are fabricated using functionalized hexagonal boron nitride (hBN) fillers and polyrotaxane, called slide-ring polymers. The hBN particles modified with a carbon layer were produced by plasma processing in hydroquinone aqueous solution and functionalized with isocyanate groups. As the functionalized hBN provides cross-linking points for polyrotaxane, the cross-linking-filler composites can reduce cross-linking agents among polyrotaxane and exhibit considerable flexibility. Young's moduli of the cross-linking-filler composites are much lower than those of previously reported polyrotaxane composites while retaining their toughness. These values are relatively close to those of unfilled polyrotaxane elastomers, despite containing hBN fillers with a content of 50 wt %. Thus, the cross-linking-filler composites exhibit a combination of flexibility and thermal conductivity, which few hBN/elastomer composites have achieved.
Collapse
Affiliation(s)
- Kenichi Inoue
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba277-8561, Japan.,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa Research Complex II, 5-1-5 Kashiwanoha, Kashiwa, Chiba277-8589, Japan
| | - Tsuyohito Ito
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba277-8561, Japan
| | - Yoshiki Shimizu
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa Research Complex II, 5-1-5 Kashiwanoha, Kashiwa, Chiba277-8589, Japan
| | - Kohzo Ito
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba277-8561, Japan
| | - Kazuo Terashima
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba277-8561, Japan.,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa Research Complex II, 5-1-5 Kashiwanoha, Kashiwa, Chiba277-8589, Japan
| |
Collapse
|