1
|
Mallick T, Mondal A, Das S, De P. Inhibition of Insulin Amyloid Fibrillogenesis Using Antioxidant Copolymers with Dopamine Pendants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2501206. [PMID: 40109128 DOI: 10.1002/smll.202501206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/08/2025] [Indexed: 03/22/2025]
Abstract
Amyloid aggregation, intricately related to various neurodegenerative and metabolic diseases, presents a significant growing health challenge. Dopamine, a potent antioxidant, plays a pivotal role in modulating protein misfolding by leveraging its potent anti-amyloidogenic and neuroprotective properties. However, its biological applications are limited by poor aqueous solubility and suboptimal biocompatibility. To address these challenges, water-soluble copolymers (DP1-DP3) featuring dopamine and glucose side-chain pendants are fabricated and investigated for their efficacy in inhibiting amyloid fibril formation from insulin and amyloid beta (Aβ42) peptide. The effects of DP1-DP3 copolymers on amyloid fibrillation are assessed using several biophysical techniques, which demonstrate excellent radical scavenging properties and the remarkable efficacy of DP3 copolymer in suppressing insulin amyloid fibrillation, achieving ≈97% inhibition. Isothermal titration calorimetry (ITC) and fluorescence binding experiments are carried out to quantify the insulin-DP3 complex formation. Molecular dynamics simulations validate the ability of DP3 to prevent amyloid fibrillogenesis of both insulin and Aβ42. These studies demonstrate beneficial interactions between DP3 and amyloidogenic protein/peptide, facilitating the stability of the resulting complexes. Overall, the present findings suggest that dopamine-based antioxidant polymers hold significant potential as advanced therapeutic agents for preventing amyloidogenic disorders.
Collapse
Affiliation(s)
- Tamanna Mallick
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Anushree Mondal
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Shubham Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| |
Collapse
|
2
|
Hong X, Chen T, Liu Y, Li J, Huang D, Ye K, Liao W, Wang Y, Liu M, Luan P. Design, current states, and challenges of nanomaterials in anti-neuroinflammation: A perspective on Alzheimer's disease. Ageing Res Rev 2025; 105:102669. [PMID: 39864562 DOI: 10.1016/j.arr.2025.102669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/08/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Alzheimer's disease (AD), an age-related neurodegenerative disease, brings huge damage to the society, to the whole family and even to the patient himself. However, until now, the etiological factor of AD is still unknown and there is no effective treatment for it. Massive deposition of amyloid-beta peptide(Aβ) and hyperphosphorylation of Tau proteins are acknowledged pathological features of AD. Recent studies have revealed that neuroinflammation plays a pivotal role in the pathology of AD. With the rise of nanomaterials in the biomedical field, researchers are exploring how the unique properties of these materials can be leveraged to develop effective treatments for AD. This article has summarized the influence of neuroinflammation in AD, the design of nanoplatforms, and the current research status and inadequacy of nanomaterials in improving neuroinflammation in AD.
Collapse
Affiliation(s)
- Xinyang Hong
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Yunyun Liu
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Jun Li
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Dongqing Huang
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Kaiyu Ye
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Wanchen Liao
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Yulin Wang
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Mengling Liu
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Ping Luan
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China; School of Basic Medical Sciences, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
3
|
Xavier-de-Britto I, Gomes-da-Silva NC, Gomes Soares MA, Follmer C, Dabkiewicz D, Alencar LMR, Sant’Anna C, Ferreira TPT, Martins PRES, Ricci-Junior E, Fechine PBA, Santos-Oliveira R. Therapeutic Potential of Arimoclomol Nanomicelles: In Vitro Impact on Alzheimer's and Parkinson's Pathology and Correlation with In Vivo Inflammatory Response. ACS Chem Neurosci 2025; 16:699-710. [PMID: 39907698 PMCID: PMC11843614 DOI: 10.1021/acschemneuro.4c00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025] Open
Abstract
This study investigates the potential of arimoclomol-loaded nanomicelles for the treatment of neurodegenerative diseases like Alzheimer's and Parkinson's, as well as their anti-inflammatory properties. Arimoclomol, a coinducer of heat shock proteins (HSPs), has shown clinical promise in mitigating protein misfolding, a hallmark of these diseases. In this work, arimoclomol nanomicelles significantly reduced the aggregation of β-amyloid (Aβ1-42) and α-synuclein (α-syn), key pathological proteins in Alzheimer's and Parkinson's. Additionally, the nanomicelles demonstrated potent anti-inflammatory effects, reducing leukocyte and neutrophil counts in an acute inflammation model. These results suggest that arimoclomol nanomicelles could enhance clinical outcomes by targeting both neurodegenerative and inflammatory processes, offering a promising therapeutic strategy for long-term disease management.
Collapse
Affiliation(s)
- Isabelle Xavier-de-Britto
- Brazilian
Nuclear Energy Commission, Nuclear Engineering
Institute, Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Rio de Janeiro, Rio de Janeiro 21941906, Brazil
| | - Natália Cristina Gomes-da-Silva
- Brazilian
Nuclear Energy Commission, Nuclear Engineering
Institute, Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Rio de Janeiro, Rio de Janeiro 21941906, Brazil
| | - Marilia Amável Gomes Soares
- Brazilian
Nuclear Energy Commission, Nuclear Engineering
Institute, Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Rio de Janeiro, Rio de Janeiro 21941906, Brazil
| | - Cristian Follmer
- Laboratory
of Biological Chemistry of Neurodegenerative Disorders, Department
of Physical Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - David Dabkiewicz
- Laboratory
of Biological Chemistry of Neurodegenerative Disorders, Department
of Physical Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Biophysics
and Nanosystems Laboratory, Federal University of Maranhão, Department of Physics, São Luis, Maranhão 65065690, Brazil
| | - Celso Sant’Anna
- Laboratory
of Microscopy Applied to Life Science–Lamav, National Institute of Metrology, Quality and Technology, Duque de Caxias, Rio de
Janeiro 25250-020, Brazil
| | | | | | - Eduardo Ricci-Junior
- Federal
University of Rio de Janeiro, School of
Pharmacy, Rio de Janeiro, Rio de Janeiro 21941900, Brazil
| | - Pierre Basílio Almeida Fechine
- Group
of Chemistry of Advanced Materials (GQMat)–Department of Analytical
Chemistry and Physical-Chemistry, Federal
University of Ceará, Fortaleza, Ceará 451-970, Brazil
| | - Ralph Santos-Oliveira
- Brazilian
Nuclear Energy Commission, Nuclear Engineering
Institute, Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Rio de Janeiro, Rio de Janeiro 21941906, Brazil
- Rio
de Janeiro State University, Laboratory
of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro 23070200, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Liu L, He H, Du B, He Y. Nanoscale drug formulations for the treatment of Alzheimer's disease progression. RSC Adv 2025; 15:4031-4078. [PMID: 39926227 PMCID: PMC11803502 DOI: 10.1039/d4ra08128e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/29/2025] [Indexed: 02/11/2025] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder with no effective disease-modifying treatments. The blood-brain barrier hinders drug delivery to the brain, limiting therapeutic efficacy. Nanoparticle-based systems have emerged as promising tools to overcome these challenges. This review highlights recent advances in nanoparticle technologies for AD treatment, including liposomes, polymeric, inorganic, and biomimetic nanoparticles. These nanoparticles improve drug delivery across the blood-brain barrier, improve stability and bioavailability, and enable targeted delivery to affected brain regions. Functionalization strategies further enhance their therapeutic potential. Multifunctional nanoparticles combining therapeutic and diagnostic properties offer theranostic approaches. While progress has been made, challenges related to safety, targeting precision, and clinical translation remain. Future perspectives emphasize the need for collaborative efforts to optimize nanoparticle design, conduct rigorous studies, and accelerate the development of effective nanotherapeutics. With continued innovation, nanoparticle-based delivery systems hold great promise for revolutionizing AD treatment.
Collapse
Affiliation(s)
- Liqin Liu
- Department of Pediatrics of Neurology Nursing, West China School of Nursing, West China Second University Hospital, Sichuan University Chengdu 610000 China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu 610000 China
| | - Haini He
- Department of Pediatrics of Neurology Nursing, West China School of Nursing, West China Second University Hospital, Sichuan University Chengdu 610000 China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu 610000 China
| | - Bin Du
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu 610000 China
| | - Yang He
- Department of Pediatrics, West China Second University Hospital, Sichuan University Chengdu 610000 China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu 610000 China
| |
Collapse
|
5
|
Chen S, Li R, Liu Y, Zhang Z, Fang M, Huang S, Li Y, Geng L. Multifunctional Nitrogen-Doped Carbon Dots to Inhibit the Aggregation of Aβ Peptide and Depolymerize the Aβ Fibrils by Modulating Reactive Oxygen Species. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26018-26025. [PMID: 39602498 DOI: 10.1021/acs.langmuir.4c03454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Multifunctional nitrogen-doped carbon dots (N-CDs) were synthesized, and the morphology, composition, and spectral properties of N-CDs were characterized by multiple characterization techniques. The inhibition of β-amyloid (Aβ) peptide aggregation and the destruction of the Aβ fibril structure by N-CDs were also studied. The conformational transition and morphology of Aβ42 in the presence of N-CDs were monitored by far-UV circular dichroism (CD) spectroscopy and transmission electron microscopy (TEM). The results demonstrated that the prepared N-CDs could effectively inhibit Aβ42 peptide aggregation and depolymerize Aβ fibrils. Furthermore, the inhibition and disaggregation mechanism of existing Aβ42 fibrils by N-CDs was studied by electron paramagnetic resonance spectroscopy (EPR). The results showed that the modulation of reactive oxygen species (ROS) by N-CDs and multiple interactions between N-CDs and Aβ42 fibrils played a crucial part in restraining and reducing the aggregation of Aβ42. Our work demonstrates the therapeutic potential of N-CDs in suppressing Aβ42 peptide aggregation and destroying existing Aβ42 fibrils, which provides a new perspective strategy in the treatment of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Shenna Chen
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Ronghui Li
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Yanxu Liu
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Ziyan Zhang
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Mei Fang
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Sihang Huang
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Yayong Li
- Department of Rehabilitation Medicine, Shijiazhuang People's Hospital, Shijiazhuang 050000, P. R. China
| | - Lina Geng
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, P. R. China
| |
Collapse
|
6
|
Moorthy H, Ramesh M, Padhi D, Baruah P, Govindaraju T. Polycatechols inhibit ferroptosis and modulate tau liquid-liquid phase separation to mitigate Alzheimer's disease. MATERIALS HORIZONS 2024; 11:3082-3089. [PMID: 38647314 DOI: 10.1039/d4mh00023d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder that affects learning, memory, and cognition. Current treatments targeting amyloid-β (Aβ) and tau have shown limited effectiveness, necessitating further research on the aggregation and toxicity mechanisms. One of these mechanisms involves the liquid-liquid phase separation (LLPS) of tau, contributing to the formation of pathogenic tau aggregates, although their conformational details remain elusive. Another mechanism is ferroptosis, a type of iron-dependent lipid peroxidation-mediated cell death, which has been implicated in AD. There is a lack of therapeutic strategies that simultaneously target amyloid toxicity and ferroptosis. This study aims to explore the potential of polycatechols, PDP and PLDP, consisting of dopamine and L-Dopa, respectively, as multifunctional agents to modulate the pathological nexus between ferroptosis and AD. Polycatechols were found to sequester the labile iron pool (LIP), inhibit Aβ and tau aggregation, scavenge free radicals, protect mitochondria, and prevent ferroptosis, thereby rescuing neuronal cell death. Interestingly, PLDP promotes tau LLPS, and modulates their intermolecular interactions to inhibit the formation of toxic tau aggregates, offering a conceptually innovative approach to tackle tauopathies. This is a first-of-its-kind polymer-based integrative approach that inhibits ferroptosis, counteracts amyloid toxicity, and modulates tau LLPS to mitigate the multifaceted toxicity of AD.
Collapse
Affiliation(s)
- Hariharan Moorthy
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka 560064, India.
| | - Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka 560064, India.
| | - Dikshaa Padhi
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka 560064, India.
| | - Prayasee Baruah
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka 560064, India.
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka 560064, India.
| |
Collapse
|
7
|
Wang C, Song X, Li P, Sun S, Su J, Liu S, Wei W. Multifunctional Nanocarrier for Synergistic Treatment of Alzheimer's Disease by Inhibiting β-Amyloid Aggregation and Scavenging Reactive Oxygen Species. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27127-27138. [PMID: 38747495 DOI: 10.1021/acsami.4c02825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The excessive depositions of β-amyloid (Aβ) and abnormal level of reactive oxygen species (ROS) are considered as the important pathogenic factors of Alzheimer's disease (AD). Strategies targeting only one of them have no obvious effects in clinic. In this study, a multifunctional nanocarrier CICe@M-K that crosses the blood-brain barrier (BBB) efficiently was developed for inhibiting Aβ aggregation and scavenging ROS synchronously. Antioxidant curcumin (Cur) and photosensitizer IR780 were loaded in mesoporous silica nanomaterials (MSNs). Their surfaces were grafted with cerium oxide nanoparticles (CeO2 NPs) and a short peptide K (CKLVFFAED). Living imaging showed that CICe@M-K was mainly distributed in the brain, liver, and kidneys, indicating CICe@M-K crossed BBB efficiently and accumulated in brain. After the irradiation of 808 nm laser, Cur was continuously released. Both of Cur and the peptide K can recognize and bind to Aβ through multiple interaction including π-π stacking interaction, hydrophobic interaction, and hydrogen bond, inhibiting Aβ aggregation. On the other hand, Cur and CeO2 NPs cooperate to relieve the oxidative stress in the brains by scavenging ROS. In vivo assays showed that the CICe@M-K could diminish Aβ depositions, alleviate oxidative stress, and improve cognitive ability of the APP/PS1 AD mouse model, which demonstrated that CICe@M-K is a potential agent for AD treatment.
Collapse
Affiliation(s)
- Chenchen Wang
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xiaolei Song
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Peng Li
- Beijing Life Science Academy, Yingcai South first Street, Changping District, Beijing 100101, China
| | - Shihao Sun
- Beijing Life Science Academy, Yingcai South first Street, Changping District, Beijing 100101, China
| | - Juan Su
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Songqin Liu
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wei Wei
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|