1
|
Xu Z, Wang G, Li S, Li D, Zhou W, Yang C, Sun H, Liu Y. Thermodynamic mechanisms governing icing: Key insights for designing passive anti-icing surfaces. iScience 2025; 28:111668. [PMID: 39925431 PMCID: PMC11804742 DOI: 10.1016/j.isci.2024.111668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
In winter, while the freezing of water can create breathtaking landscapes, it also poses significant operational challenges when ice accumulates on functional surfaces. Ice obstructs solar panels, impairs car windshield visibility, increases energy consumption in appliances due to insulation, and can cause structural failures or collapses due to weight and rigidity. To address these issues, various active de-icing methods are employed in cold regions. However, passive anti-icing solutions are gaining preference for their lower energy consumption, cost-effectiveness, and environmental benefits. While superhydrophobic surfaces delay ice formation, they do not fully resolve the problem. Understanding the interaction between surfaces and moisture-essential for ice formation-can inspire innovative anti-icing design principles. This review examines icing physics, identifies critical environmental factors affecting ice formation, evaluates icephobic surfaces, and discusses practical application challenges. We also outline promising design principles for passive anti-icing surfaces, emphasizing their broad applicability across diverse environments.
Collapse
Affiliation(s)
- Zhengzheng Xu
- Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, Changchun 130025, P.R. China
| | - Guoyong Wang
- Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, Changchun 130025, P.R. China
| | - Shuangxin Li
- Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, Changchun 130025, P.R. China
| | - Danqing Li
- Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, Changchun 130025, P.R. China
| | - Wenting Zhou
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, P.R. China
| | - Chuncheng Yang
- Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, Changchun 130025, P.R. China
| | - Huan Sun
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, P.R. China
| |
Collapse
|
2
|
Chu F, Hu Z, Feng Y, Lai NC, Wu X, Wang R. Advanced Anti-Icing Strategies and Technologies by Macrostructured Photothermal Storage Superhydrophobic Surfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402897. [PMID: 38801015 DOI: 10.1002/adma.202402897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/23/2024] [Indexed: 05/29/2024]
Abstract
Water is the source of life and civilization, but water icing causes catastrophic damage to human life and diverse industrial processes. Currently, superhydrophobic surfaces (inspired by the lotus effect) aided anti-icing attracts intensive attention due to their energy-free property. Here, recent advances in anti-icing by design and functionalization of superhydrophobic surfaces are reviewed. The mechanisms and advantages of conventional, macrostructured, and photothermal superhydrophobic surfaces are introduced in turn. Conventional superhydrophobic surfaces, as well as macrostructured ones, easily lose the icephobic property under extreme conditions, while photothermal superhydrophobic surfaces strongly rely on solar illumination. To address the above issues, a potentially smart strategy is found by developing macrostructured photothermal storage superhydrophobic (MPSS) surfaces, which integrate the functions of macrostructured superhydrophobic materials, photothermal materials, and phase change materials (PCMs), and are expected to achieve all-day anti-icing in various fields. Finally, the latest achievements in developing MPSS surfaces, showcasing their immense potential, are highlighted. Besides, the perspectives on the future development of MPSS surfaces are provided and the problems that need to be solved in their practical applications are proposed.
Collapse
Affiliation(s)
- Fuqiang Chu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhifeng Hu
- Research Center of Solar Power and Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China
| | - Yanhui Feng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Nien-Chu Lai
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaomin Wu
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China
| | - Ruzhu Wang
- Research Center of Solar Power and Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Zhang S, Zhao L, Yu M, Guo J, Liu C, Zhu C, Zhao M, Huang Y, Zheng Y. Measurement Methods for Droplet Adhesion Characteristics and Micrometer-Scale Quantification of Contact Angle on Superhydrophobic Surfaces: Challenges and Opportunities. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9873-9891. [PMID: 38695884 DOI: 10.1021/acs.langmuir.3c03967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
Inspired by nature, superhydrophobic surfaces have been widely studied. Usually the wettability of a superhydrophobic surface is quantified by the macroscopic contact angle. However, this method has various limitations, especially for precision micro devices with superhydrophobic surfaces, such as biomimetic artificial compound eyes and biomimetic water strider robots. These precision micro devices with superhydrophobic surfaces proposed a higher demand for the quantification of contact angles, requiring contact angle quantification technology to have micrometer-scale measurement capabilities. In this review, it is proposed to achieve micrometer-scale quantification of superhydrophobic surface contact angles through droplet adhesion characteristics (adhesion force and contact radius). Existing contact angle quantification techniques and droplet characteristics' measurement methods were described in detail. The advancement of micrometer-scale quantification technology for the contact angle of superhydrophobic surfaces will enhance our understanding of superhydrophobic surfaces.
Collapse
Affiliation(s)
- Shiyu Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Lingzhe Zhao
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Meike Yu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jinwei Guo
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Chuntian Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Chunyuan Zhu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Meirong Zhao
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yinguo Huang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yelong Zheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
4
|
Zhong X, Xie S, Guo Z. The Challenge of Superhydrophobicity: Environmentally Facilitated Cassie-Wenzel Transitions and Structural Design. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305961. [PMID: 38145324 PMCID: PMC10933658 DOI: 10.1002/advs.202305961] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/02/2023] [Indexed: 12/26/2023]
Abstract
Superhydrophobic materials can be used in various fields to optimize production and life due to their unique surface wetting properties. However, under certain pressure and perturbation conditions, the droplets deposited on superhydrophobic materials are prone to change from Cassie state to Wenzel state, which limits the practical applications of the materials. In recent years, a large number of works have investigated the transition behavior, transition mechanism, and influencing factors of the wetting transition that occurs when a superhydrophobic surface is under a series of external environments. Based on these works, in this paper, the phenomenon and kinetic behavior of the destruction of the Cassie state and the mechanism of the wetting transition are systematically summarized under external conditions that promote the wetting transition on the material surface, including pressure, impact, evaporation, vibration, and electric wetting. In addition, superhydrophobic surface morphology has been shown to directly affect the duration of the Cassie state. Based on the published work the effects of specific morphology on the Cassie state, including structural size, structural shape, and structural level, are summarized in this paper from theoretical analyses and experimental data.
Collapse
Affiliation(s)
- Xin Zhong
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional MaterialsHubei UniversityWuhan430062China
| | - Shangzhen Xie
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional MaterialsHubei UniversityWuhan430062China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional MaterialsHubei UniversityWuhan430062China
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
| |
Collapse
|
5
|
Hu Z, Chu F, Shan H, Wu X, Dong Z, Wang R. Understanding and Utilizing Droplet Impact on Superhydrophobic Surfaces: Phenomena, Mechanisms, Regulations, Applications, and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310177. [PMID: 38069449 DOI: 10.1002/adma.202310177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/13/2023] [Indexed: 12/19/2023]
Abstract
Droplet impact is a ubiquitous liquid behavior that closely tied to human life and production, making indispensable impacts on the big world. Nature-inspired superhydrophobic surfaces provide a powerful platform for regulating droplet impact dynamics. The collision between classic phenomena of droplet impact and the advanced manufacture of superhydrophobic surfaces is lighting up the future. Accurately understanding, predicting, and tailoring droplet dynamic behaviors on superhydrophobic surfaces are progressive steps to integrate the droplet impact into versatile applications and further improve the efficiency. In this review, the progress on phenomena, mechanisms, regulations, and applications of droplet impact on superhydrophobic surfaces, bridging the gap between droplet impact, superhydrophobic surfaces, and engineering applications are comprehensively summarized. It is highlighted that droplet contact and rebound are two focal points, and their fundamentals and dynamic regulations on elaborately designed superhydrophobic surfaces are discussed in detail. For the first time, diverse applications are classified into four categories according to the requirements for droplet contact and rebound. The remaining challenges are also pointed out and future directions to trigger subsequent research on droplet impact from both scientific and applied perspectives are outlined. The review is expected to provide a general framework for understanding and utilizing droplet impact.
Collapse
Affiliation(s)
- Zhifeng Hu
- Research Center of Solar Power and Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fuqiang Chu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - He Shan
- Research Center of Solar Power and Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaomin Wu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruzhu Wang
- Research Center of Solar Power and Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|