1
|
Schafer EA, Maraj JJ, Kenney C, Sarles SA, Rivnay J. Droplet Polymer Bilayers for Bioelectronic Membrane Interfacing. J Am Chem Soc 2024; 146:14391-14396. [PMID: 38748513 DOI: 10.1021/jacs.4c01591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Model membranes interfaced with bioelectronics allow for the exploration of fundamental cell processes and the design of biomimetic sensors. Organic conducting polymers are an attractive surface on which to study the electrical properties of membranes because of their low impedance, high biocompatibility, and hygroscopic nature. However, establishing supported lipid bilayers (SLBs) on conducting polymers has lagged significantly behind other substrate materials, namely, for challenges in membrane electrical sealing and stability. Unlike SLBs that are highly dependent on surface interactions, droplet interface bilayers (DIBs) and droplet hydrogel bilayers (DHBs) leverage the energetically favorable organization of phospholipids at atomically smooth liquid interfaces to build high-integrity membranes. For the first time, we report the formation of droplet polymer bilayers (DPBs) between a lipid-coated aqueous droplet and the high-performing conducting polymer poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS). The resulting bilayers can be produced from a range of lipid compositions and demonstrate strong electrical sealing that outcompetes SLBs. DPBs are subsequently translated to patterned and planar microelectrode arrays to ease barriers to implementation and improve the reliability of membrane formation. This platform enables more reproducible and robust membranes on conducting polymers to further the mission of merging bioelectronics and synthetic, natural, or hybrid bilayer membranes.
Collapse
Affiliation(s)
- Emily A Schafer
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Joshua J Maraj
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37916, United States
| | - Camryn Kenney
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Stephen A Sarles
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37916, United States
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
2
|
Segars B, Makhoul-Mansour M, Beyrouthy J, Freeman EC. Measuring the Transmembrane Registration of Lipid Domains in Droplet Interface Bilayers through Tensiometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11228-11238. [PMID: 38753461 PMCID: PMC11140749 DOI: 10.1021/acs.langmuir.4c00958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Diverse collections of lipids self-assemble into domains within biological membranes, and these domains are typically organized in both the transverse and lateral directions of the membrane. The ability of the membrane to link these domains across the membrane's interior grants cells control over features on the external cellular surface. Numerous hypothesized factors drive the cross-membrane (or transverse) coupling of lipid domains. In this work we seek to isolate these transverse lipid-lipid influences in a simple model system using droplet interface bilayers (DIBs) to better understand the associated mechanics. DIBs enable symmetric and asymmetric combinations of domain-forming lipid mixtures within a model bilayer, and the evolving energetics of the membrane may be tracked using drop-shape analysis. We find that symmetric distributions of domain-forming lipids produce long-lasting, gradual shifts in the DIB membrane energetics that are not observed in asymmetric distributions of the lipids where the domain-forming lipids are only within one leaflet. The approach selected for this work provides experimental measurement of the mismatch penalty associated with antiregistered lipid domains as well as measurements of the influence of rafts on DIB behaviors with suggestions for their future use as a model platform.
Collapse
Affiliation(s)
- Braydon
G. Segars
- School
of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, 110 Riverbend Road, Athens, Georgia 30605, United States
| | - Michelle Makhoul-Mansour
- School
of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, 110 Riverbend Road, Athens, Georgia 30605, United States
- Mechanical,
Agricultural, Biomedical, and Environmental Engineering Department,
Tickle College of Engineering, University
of Tennessee Knoxville, 1512 Middle Dr., Knoxville, Tennessee 37916, United States
| | - Joyce Beyrouthy
- School
of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, 110 Riverbend Road, Athens, Georgia 30605, United States
| | - Eric C. Freeman
- School
of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, 110 Riverbend Road, Athens, Georgia 30605, United States
| |
Collapse
|
3
|
Smith A, Larsen TRB, Zimmerman HK, Virolainen SJ, Meyer JJ, Keranen Burden LM, Burden DL. Design and Construction of a Multi-Tiered Minimal Actin Cortex for Structural Support in Lipid Bilayer Applications. ACS APPLIED BIO MATERIALS 2024; 7:1936-1946. [PMID: 38427377 PMCID: PMC10951949 DOI: 10.1021/acsabm.3c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
Artificial lipid bilayers have revolutionized biochemical and biophysical research by providing a versatile interface to study aspects of cell membranes and membrane-bound processes in a controlled environment. Artificial bilayers also play a central role in numerous biosensing applications, form the foundational interface for liposomal drug delivery, and provide a vital structure for the development of synthetic cells. But unlike the envelope in many living cells, artificial bilayers can be mechanically fragile. Here, we develop prototype scaffolds for artificial bilayers made from multiple chemically linked tiers of actin filaments that can be bonded to lipid headgroups. We call the interlinked and layered assembly a multiple minimal actin cortex (multi-MAC). Construction of multi-MACs has the potential to significantly increase the bilayer's resistance to applied stress while retaining many desirable physical and chemical properties that are characteristic of lipid bilayers. Furthermore, the linking chemistry of multi-MACs is generalizable and can be applied almost anywhere lipid bilayers are important. This work describes a filament-by-filament approach to multi-MAC assembly that produces distinct 2D and 3D architectures. The nature of the structure depends on a combination of the underlying chemical conditions. Using fluorescence imaging techniques in model planar bilayers, we explore how multi-MACs vary with electrostatic charge, assembly time, ionic strength, and type of chemical linker. We also assess how the presence of a multi-MAC alters the underlying lateral diffusion of lipids and investigate the ability of multi-MACs to withstand exposure to shear stress.
Collapse
Affiliation(s)
- Amanda
J. Smith
- Chemistry Department, Wheaton College, 501 College Ave., Wheaton, Illinois 60187, United States
| | - Theodore R. B. Larsen
- Chemistry Department, Wheaton College, 501 College Ave., Wheaton, Illinois 60187, United States
| | - Harmony K. Zimmerman
- Chemistry Department, Wheaton College, 501 College Ave., Wheaton, Illinois 60187, United States
| | - Samuel J. Virolainen
- Chemistry Department, Wheaton College, 501 College Ave., Wheaton, Illinois 60187, United States
| | - Joshua J. Meyer
- Chemistry Department, Wheaton College, 501 College Ave., Wheaton, Illinois 60187, United States
| | - Lisa M. Keranen Burden
- Chemistry Department, Wheaton College, 501 College Ave., Wheaton, Illinois 60187, United States
| | - Daniel L. Burden
- Chemistry Department, Wheaton College, 501 College Ave., Wheaton, Illinois 60187, United States
| |
Collapse
|
4
|
Nakamura H, Okamura T, Tajima M, Kawano R, Yamaji M, Ohsaki S, Watano S. Enhancement of cell membrane permeability by using charged nanoparticles and a weak external electric field. Phys Chem Chem Phys 2023; 25:32356-32363. [PMID: 37975520 DOI: 10.1039/d3cp03281g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Because the cell membrane is the main barrier of intracellular delivery, it is important to facilitate and control the translocation of extracellular compounds across it. Our earlier molecular dynamics simulations suggested that charged nanoparticles under a weak external electric field can enhance the permeability of the cell membrane without disrupting it. However, this membrane permeabilization approach has not been tested experimentally. This study investigated the membrane crossing of a model compound (dextran with a Mw of 3000-5000) using charged nanoparticles and a weak external electric field. A model bilayer lipid membrane was prepared by using a droplet contact method. The permeability of the membrane was evaluated using the electrophysiological technique. Even when the applied electric field was below the critical strength for membrane breakdown, dextran was able to cross the membrane without causing membrane breakdown. These results indicate that adding nanomaterials under a weak electric field may enhance the translocation of delivery compounds across the cell membrane with less damage, suggesting a new strategy for intracellular delivery systems.
Collapse
Affiliation(s)
- Hideya Nakamura
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Takumi Okamura
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Masaya Tajima
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Misa Yamaji
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Shuji Ohsaki
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Satoru Watano
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
5
|
Mashali F, Basham CM, Xu X, Servidio C, Silva PHJ, Stellacci F, Sarles SA. Simultaneous Electrophysiology and Imaging Reveal Changes in Lipid Membrane Thickness and Tension upon Uptake of Amphiphilic Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15031-15045. [PMID: 37812767 DOI: 10.1021/acs.langmuir.3c01973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Amphiphilic gold core nanoparticles (AmNPs) striped with hydrophilic 11-mercapto-1-undecanesulfonate (MUS) and hydrophobic 1-octanethiol (OT) ligands are promising candidates for drug carriers that passively and nondisruptively enter cells. Yet, how they interact with cellular membranes is still only partially understood. Herein, we use electrophysiology and imaging to carefully assess changes in droplet interface bilayer lipid membranes (DIBs) incurred by striped AmNPs added via microinjection. We find that AmNPs spontaneously reduce the steady-state specific capacitance and contact angle of phosphatidylcholine DIBs by amounts dependent on the final NP concentration. These reductions, which are greater for NPs with a higher % OT ligands and membranes containing unsaturated lipids but negligible for MUS-only-coated NPs, reveal that AmNPs passively embed in the interior of the bilayer where they increase membrane thickness and lateral tension through disruption of lipid packing. These results demonstrate the enhanced evaluation of nano-bio interactions possible via electrophysiology and imaging of DIBs.
Collapse
Affiliation(s)
- Farzin Mashali
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Colin M Basham
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Xufeng Xu
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Camilla Servidio
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Paulo H Jacob Silva
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Stephen A Sarles
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|