1
|
Bao Y, Zhang J, Yang J, Xia Y, Liang D, Zhao Y, Yu H, Huang S, Guo W, Zhang J. A Novel Solid Hydrogel Sleeve Couplant for Ultrasound Imaging. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2025. [PMID: 40162515 DOI: 10.1002/jum.16690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/26/2025] [Accepted: 03/15/2025] [Indexed: 04/02/2025]
Abstract
OBJECTIVES To address the challenges of ultrasound scanning on curvilinear skin surfaces at joints, this study introduces a novel Shapable and Elastic Couplants sleeve of Hydrogel (SECH) based on a "Curve-to-Smooth" strategy. The aim is to improve acoustic wave transmission, enhance image quality, and enable efficient 3D imaging of high-curvature body parts such as the hand, foot, shoulder, and neck. METHODS The SECH was fabricated using acrylamide (AAm) as the primary monomer, N,N-methylenebisacrylamide (MBAA) as the crosslinking agent, ammonium persulfate (APS) as the initiator, and N,N,N',N'-tetramethylethylenediamine (TEMED) as the accelerator. A dual-mold strategy was employed to shape the hydrogel to specific body parts. Mechanical characterization was performed using tensile tests and manual stretching/compression cycles. Ultrasound imaging was conducted on a healthy adult male volunteer using the Vevo F2 system with an L38 linear probe transducer. Cyclic scans were performed on the hand, foot, shoulder, and neck, and 3D image reconstruction was achieved using Matlab and ImageJ. RESULTS The SECH demonstrated effective mechanical properties, balancing softness and hardness to minimize air gaps and ensure stable acoustic wave transmission. Ultrasound imaging with SECH enabled high-quality 3D reconstructions of high-curvature body parts, including the hand, foot, shoulder, and neck. Multi-planar analysis of the images provided detailed diagnostic information for conditions such as hand fractures, Achilles tendon injuries, shoulder dislocations, and carotid artery stenosis. CONCLUSION The SECH represents a novel ultrasound scanning strategy that overcomes the limitations of conventional rigid probes on curvilinear surfaces. It facilitates large-area 3D imaging of high-curvature body parts, improving diagnostic accuracy and efficiency in clinical ultrasonography. This customizable hydrogel sleeve has the potential to enable convenient and automated ultrasound scanning for irregular anatomical areas.
Collapse
Affiliation(s)
- Yunlong Bao
- College of Engineering, Peking University, Beijing, People's Republic of China
| | - Jiabin Zhang
- College of Future Technology, Peking University, Beijing, People's Republic of China
| | - Jinyu Yang
- College of Engineering, Peking University, Beijing, People's Republic of China
| | - Yu Xia
- College of Engineering, Peking University, Beijing, People's Republic of China
| | - Dongdong Liang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Yunlong Zhao
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Hao Yu
- College of Engineering, Peking University, Beijing, People's Republic of China
| | - Shuo Huang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Wenyu Guo
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Jue Zhang
- College of Engineering, Peking University, Beijing, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| |
Collapse
|
2
|
Wang N, Luo L, Xu X, Zhou H, Li F. Focused ultrasound-induced cell apoptosis for the treatment of tumours. PeerJ 2024; 12:e17886. [PMID: 39184389 PMCID: PMC11344538 DOI: 10.7717/peerj.17886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
Cancer is a serious public health problem worldwide. Traditional treatments, such as surgery, radiotherapy, chemotherapy, and immunotherapy, do not always yield satisfactory results; therefore, an efficient treatment for tumours is urgently needed. As a convenient and minimally invasive modality, focused ultrasound (FUS) has been used not only as a diagnostic tool but also as a therapeutic tool in an increasing number of studies. FUS can help treat malignant tumours by inducing apoptosis. This review describes the three apoptotic pathways, apoptotic cell clearance, and how FUS affects these three apoptotic pathways. This review also discusses the role of thermal and cavitation effects on apoptosis, including caspase activity, mitochondrial dysfunction, and Ca2+ elease. Finally, this article reviews various aspects of FUS combination therapy, including sensitization by radiotherapy and chemotherapy, gene expression upregulation, and the introduction of therapeutic gases, to provide new ideas for clinical tumour therapy.
Collapse
Affiliation(s)
- Na Wang
- Chongqing University, School of Medicine, Chongqing, China
- Chongqing University Cancer Hospital, Ultrasound Department, Chongqing, China
| | - Li Luo
- Chongqing University Cancer Hospital, Ultrasound Department, Chongqing, China
| | - Xinzhi Xu
- Chongqing University Cancer Hospital, Ultrasound Department, Chongqing, China
| | - Hang Zhou
- Chongqing University Cancer Hospital, Ultrasound Department, Chongqing, China
| | - Fang Li
- Chongqing University Cancer Hospital, Ultrasound Department, Chongqing, China
| |
Collapse
|
3
|
Ghaffari-Bohlouli P, Jafari H, Okoro OV, Alimoradi H, Nie L, Jiang G, Kakkar A, Shavandi A. Gas Therapy: Generating, Delivery, and Biomedical Applications. SMALL METHODS 2024; 8:e2301349. [PMID: 38193272 DOI: 10.1002/smtd.202301349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/11/2023] [Indexed: 01/10/2024]
Abstract
Oxygen (O2), nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S), and hydrogen (H2) with direct effects, and carbon dioxide (CO2) with complementary effects on the condition of various diseases are known as therapeutic gases. The targeted delivery and in situ generation of these therapeutic gases with controllable release at the site of disease has attracted attention to avoid the risk of gas poisoning and improve their performance in treating various diseases such as cancer therapy, cardiovascular therapy, bone tissue engineering, and wound healing. Stimuli-responsive gas-generating sources and delivery systems based on biomaterials that enable on-demand and controllable release are promising approaches for precise gas therapy. This work highlights current advances in the design and development of new approaches and systems to generate and deliver therapeutic gases at the site of disease with on-demand release behavior. The performance of the delivered gases in various biomedical applications is then discussed.
Collapse
Affiliation(s)
- Pejman Ghaffari-Bohlouli
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, H3A 0B8, Canada
| | - Hafez Jafari
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
| | - Oseweuba Valentine Okoro
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
| | - Houman Alimoradi
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
| | - Lei Nie
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, H3A 0B8, Canada
| | - Amin Shavandi
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
| |
Collapse
|
4
|
Tang C, Ling P, Gao X, Zhang Q, Yang P, Wang L, Xu W, Gao F. Cascade Self-Generation of Carbon Monoxide Triggered by Photoinduced Holes for Efficient Hypoxic Tumors Therapy. ACS Biomater Sci Eng 2024; 10:4009-4017. [PMID: 38722972 DOI: 10.1021/acsbiomaterials.4c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
It still remains challenging to design multifunctional therapeutic reagents for effective cancer therapy under a unique tumor microenvironment including insufficient endogenous H2O2 and O2, low pH, and a high concentration of glutathione (GSH). In this work, a CO-based phototherapeutic system triggered by photogenerated holes, which consisted of ionic liquid (IL), the CO prodrug Mn2(CO)10, and iridium(III) porphyrin (IrPor) modified carbonized ZIF-8-doped graphitic carbon nitride nanocomposite (IL/ZCN@Ir(CO)), was designed for cascade hypoxic tumors. Upon light irradiation, the photogenerated holes on IL/ZCN@Ir(CO) oxidize water into H2O2, which subsequently induces Mn2(CO)10 to release CO. Meanwhile, IrPor can convert H2O2 to hydroxyl radical (•OH) and subsequent singlet oxygen (1O2), which further triggers CO release. Moreover, the degraded MnO2 shows activity for glutathione (GSH) depletion and mimics peroxidase, leading to GSH reduction and •OH production in tumors. Thus, this strategy can in situ release high concentrations of CO and reactive oxygen species (ROS) and deplete GSH to efficiently induce cell apoptosis under hypoxic conditions, which has a high inhibiting effect on the growth of tumors, offering an attractive strategy to amplify CO and ROS generation to meet therapeutic requirements in cancer treatment.
Collapse
Affiliation(s)
- Chuanye Tang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Pinghua Ling
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xianping Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qiang Zhang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs and Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical College, Wuhu 241002, P. R. China
| | - Pei Yang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Linyu Wang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Wenwen Xu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
5
|
Changizi S, Marquette IG, VanSant J, Alghazwat O, Elgattar A, Liao Y, Bashur CA. Carbon monoxide release from ultrasound-sensitive microbubbles improves endothelial cell growth. J Biomed Mater Res A 2024; 112:600-612. [PMID: 37855181 DOI: 10.1002/jbm.a.37629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/20/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023]
Abstract
Carbon monoxide is a gasotransmitter that may be beneficial for vascular tissue engineering and regenerative medicine strategies because it can promote endothelial cell (EC) proliferation and migration by binding to heme-containing compounds within cells. For example, CO may be beneficial for vascular cognitive impairment and dementia because many patients' disrupted blood-brain barriers do not heal naturally. However, control of the CO dose is critical, and new controlled delivery methods need to be developed. This study developed ultrasound-sensitive microbubbles with a carefully controlled precipitation technique, loaded them with CO, and assessed their ability to promote EC proliferation and function. Microbubbles fabricated with perfluoropentane exhibited good stability at room temperature, but they could still be ruptured and release CO in culture with application of ultrasound. Microbubbles synthesized from the higher boiling point compound, perfluorohexane, were too stable at physiological temperature. The lower-boiling point perfluoropentane microbubbles had good biocompatibility and appeared to improve VE-cadherin expression when CO was loaded in the bubbles. Finally, tissue phantoms were used to show that an imaging ultrasound probe can efficiently rupture the microbubbles and that the CO-loaded microbubbles can improve EC spreading and proliferation compared to control conditions without microbubbles as well as microbubbles without application of ultrasound. Overall, this study demonstrated the potential for use of these ultrasound-sensitive microbubbles for improving blood vessel endothelialization.
Collapse
Affiliation(s)
- Shirin Changizi
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Isabel G Marquette
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Jennifer VanSant
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Osamah Alghazwat
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Adnan Elgattar
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Yi Liao
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Chris A Bashur
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| |
Collapse
|
6
|
Ling P, Yang P, Zhang Q, Tang C, Gao X, Wang L, Xu W. pH-Responsive Multifunctional Nanoplatforms with Reactive Oxygen Species-Controlled Release of CO for Enhanced Oncotherapy. ACS APPLIED BIO MATERIALS 2023; 6:5708-5715. [PMID: 37990995 DOI: 10.1021/acsabm.3c00834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Recently, various nanomaterials have drawn increasing attention for enhanced tumor therapy. However, a lack of tumor uptake and insufficient generation of cytotoxic agents have largely limited the antitumor efficacy in vivo. Herein, a multifunctional nanoplatform (IL@CPPor(CO)) was constructed with pH-responsive copper peroxide nanoparticles (CPNP) that are capable of self-supplying H2O2, a radical-sensitive carbonic oxide (CO) donor (Fe3(CO)12), photosensitizer Iridium(III) meso-tetra (N-methyl-4-pyridyl)porphyrin pentachloride (IrPor), and ionic liquid (IL) for enhanced oncotherapy. Under acidic conditions, the CPNP could decompose to release H2O2 and Cu2+. The concomitant generation of H2O2 could efficiently trigger Fe3(CO)12 to release the CO in situ. On the other hand, Cu2+ possesses both glutathione depletion and Fenton-like properties. In addition, IrPor has both peroxidase-like activity and photosensitizer properties to produce reactive oxygen species (ROS) in tumors. The released ROS could trigger the rapid intracellular release of CO. More importantly, released CO and ROS could promote cell apoptosis and improve the therapeutic efficacy. Moreover, due to the pH-dependent ROS generation property, the IL@CPPor(CO) exhibited high tumor accumulation, low toxicity, and good biocompatibility, which enabled effective tumor growth inhibition with minimal side effects in vivo. This work provides a novel multifunctional nanoplatform that combined photodynamic therapy with CDT and CO to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Pinghua Ling
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Pei Yang
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qiang Zhang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs and Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical College, Wuhu 241002, P. R. China
| | - Chuanye Tang
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xianping Gao
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Linyu Wang
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Wenwen Xu
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
7
|
Trallero J, Camacho M, Marín-García M, Álvarez-Marimon E, Benseny-Cases N, Barnadas-Rodríguez R. Properties and cellular uptake of photo-triggered mixed metallosurfactant vesicles intended for controlled CO delivery in gas therapy. Colloids Surf B Biointerfaces 2023; 228:113422. [PMID: 37356136 DOI: 10.1016/j.colsurfb.2023.113422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
The scientific relevance of carbon monoxide has increased since it was discovered that it is a gasotransmitter involved in several biological processes. This fact stimulated research to find a secure and targeted delivery and lead to the synthesis of CO-releasing molecules. In this paper we present a vesicular CO delivery system triggered by light composed of a synthetized metallosurfactant (TCOL10) with two long carbon chains and a molybdenum-carbonyl complex. We studied the characteristics of mixed TCOL10/phosphatidylcholine metallosomes of different sizes. Vesicles from 80 to 800 nm in diameter are mainly unilamellar, do not disaggregate upon dilution, in the dark are physically and chemically stable at 4 °C for at least one month, and exhibit a lag phase of about 4 days before they show a spontaneous CO release at 37 °C. Internalization of metallosomes by cells was studied as function of the incubation time, and vesicle concentration and size. Results show that large vesicles are more efficiently internalized than the smaller ones in terms of the percentage of cells that show TCOL10 and the amount of drug that they take up. On balance, TCOL10 metallosomes constitute a promising and viable approach for efficient delivery of CO to biological systems.
Collapse
Affiliation(s)
- Jan Trallero
- Universitat Autònoma de Barcelona, Biophysics Unit/Center for Biophysical Studies, Department of Biochemistry and Molecular Biology, Faculty of Medicine, 08193 Cerdanyola del Vallès, Spain
| | - Mercedes Camacho
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau - Centre CERCA, Genomics of Complex Diseases, Barcelona, Spain
| | - Maribel Marín-García
- Universitat Autònoma de Barcelona, Biophysics Unit/Center for Biophysical Studies, Department of Biochemistry and Molecular Biology, Faculty of Medicine, 08193 Cerdanyola del Vallès, Spain
| | - Elena Álvarez-Marimon
- Universitat Autònoma de Barcelona, Biophysics Unit/Center for Biophysical Studies, Department of Biochemistry and Molecular Biology, Faculty of Medicine, 08193 Cerdanyola del Vallès, Spain
| | - Núria Benseny-Cases
- Universitat Autònoma de Barcelona, Biophysics Unit/Center for Biophysical Studies, Department of Biochemistry and Molecular Biology, Faculty of Medicine, 08193 Cerdanyola del Vallès, Spain; Consorcio para la Construcción Equipamiento y Explotacion del Laboratorio de Luz Sincrotron, ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Catalonia, Spain.
| | - Ramon Barnadas-Rodríguez
- Universitat Autònoma de Barcelona, Biophysics Unit/Center for Biophysical Studies, Department of Biochemistry and Molecular Biology, Faculty of Medicine, 08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
8
|
Huang D, Wang J, Song C, Zhao Y. Ultrasound-responsive matters for biomedical applications. Innovation (N Y) 2023; 4:100421. [PMID: 37192908 PMCID: PMC10182333 DOI: 10.1016/j.xinn.2023.100421] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/03/2023] [Indexed: 05/18/2023] Open
Abstract
Ultrasound (US) is a biofavorable mechanical wave that has shown practical significance in biomedical fields. Due to the cavitation effect, sonoluminescence, sonoporation, pyrolysis, and other biophysical and chemical effects, a wide range of matters have been elucidated to be responsive to the stimulus of US. This review addresses and discusses current developments in US-responsive matters, including US-breakable intermolecular conjugations, US-catalytic sonosensitizers, fluorocarbon compounds, microbubbles, and US-propelled micro- and nanorobots. Meanwhile, the interactions between US and advanced matters create various biochemical products and enhanced mechanical effects, leading to the exploration of potential biomedical applications, from US-facilitated biosensing and diagnostic imaging to US-induced therapeutic applications and clinical translations. Finally, the current challenges are summarized and future perspectives on US-responsive matters in biomedical applications and clinical translations are proposed.
Collapse
Affiliation(s)
- Danqing Huang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
| | - Jinglin Wang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
| | - Chuanhui Song
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| |
Collapse
|