1
|
Li G, Lian Z, Lyu Q, Zhu C, Liu Z, Zhang S, Zhong Q. Built-in electric field mediated S-scheme charge migration and Co-N4(II) sites in cobalt phthalocyanine/MIL-68(In)-NH 2 heterojunction for boosting photocatalytic nitric oxide oxidation. J Colloid Interface Sci 2024; 675:549-559. [PMID: 38986328 DOI: 10.1016/j.jcis.2024.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
The efficiency of photocatalytic Nitric Oxide(NO) oxidation is limited by the lack of oxygen(O2) active sites and poor charge carrier separation. To address this challenge, we developed a molecular Cobalt Phthalocyanine modified MIL-68(In)-NH2 photocatalyst with a robust Built-in electric field(BIEF). In the 2 % CoPc-MIN sample, the BIEF strength is increased by 3.54 times and 5.83 times compared to pristine CoPc and MIL-68(In)-NH2, respectively. This BIEF facilitates the efficient S-scheme charge transfer, thereby enhancing photogenerated carrier separation. Additionally, the Co-N4(II) sites in CoPc can effectively trap the separated photoexcited electrons in the S-scheme system. In addition, the Co-N4(II) sites can also serve as active sites for O2 adsorption and activation, promoting the generation of superoxide radical (O2-), thereby driving the direct conversion of NO to nitrate(NO3-). Consequently, the 2 % CoPc-MIN sample exhibits a remarkable photocatalytic NO removal efficiency of 79.37 % while effectively suppressing the formation of harmful by-product nitrogen dioxide(NO2) to below 3.5 ppb. This study provides a feasible strategy for designing high-efficiency O2 activation photocatalysts for NO oxidation.
Collapse
Affiliation(s)
- Guojun Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Zheng Lian
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Qiuqiu Lyu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Chenyu Zhu
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhinian Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Shule Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Qin Zhong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| |
Collapse
|
2
|
Huang H, Yue K, Liu C, Zhan K, Dong H, Yan Y. CuO (111) Microcrystalline Evoked Indium-Organic Framework for Efficient Electroreduction of CO 2 to Formate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400441. [PMID: 38593335 DOI: 10.1002/smll.202400441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/28/2024] [Indexed: 04/11/2024]
Abstract
Electrochemical reduction of carbon dioxide (CO2RR) to formate is economically beneficial but suffers from poor selectivity and high overpotential. Herein, enriched microcrystalline copper oxide is introduced on the surface of indium-based metal-organic frameworks. Benefiting from the CuO (111) microcrystalline shell and formed catalytic active In-Cu interfaces, the obtained MIL-68(In)/CuO heterostructure display excellent CO2RR to formate with a Faradaic efficiency (FE) as high as 89.7% at low potential of only -0.7 V vs. RHE in a flow cell. Significantly, the membrane electrode assembly (MEA) cell based on MIL-68(In)/CuO exhibit a remarkable current density of 640.3 mA cm-2 at 3.1 V and can be stably operated for 180 h at 2.7 V with a current density of 200 mA cm-2. The ex/in situ electrochemical investigations reveal that the introduction of CuO increases the formation rate of the carbon dioxide reduction intermediate *HCOO- and inhibits the competitive hydrogen evolution reaction. This work not only provides an in-depth study of the mechanism of the CO2RR pathways on In/Cu composite catalyst but also offers an effective strategy for the interface design of electrocatalytic carbon dioxide reduction reaction.
Collapse
Affiliation(s)
- Honghao Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 585 Heshuo Road, Shanghai, 200050, China
| | - Kaihang Yue
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 585 Heshuo Road, Shanghai, 200050, China
| | - Chaofan Liu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ke Zhan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China
| | - Ya Yan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 585 Heshuo Road, Shanghai, 200050, China
| |
Collapse
|
3
|
Yan B, Di W, Sun Z, Han Y, Meng H, Zhang X. Rational Design of MIL-68(In) Derived Multiple Sulfides with Well Confined Quantum Dots and the Promoted Photocatalytic Hydrogen Generation. Inorg Chem 2024; 63:12190-12199. [PMID: 38946342 DOI: 10.1021/acs.inorgchem.4c01450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Quantum dots (QDs) of metal sulfides were proven to be excellent cocatalysts in visible-light-driven photocatalytic reactions. Metal organic frameworks (MOFs) possess a 3D porous channel that effectively confines small QDs and preserves their high catalytic activity by preventing their aggregation. In order to precisely construct the ternary metal sulfides of ZnS/ZnIn2S4/In2S3 with well-maintained Zn-AgInS2 (ZAIS) QDs, an in situ sulfurization combining a subsequent Zn(II)-exchange strategy was employed in this work. First, the ZAIS QDs were incorporated into MIL-68(In), which were then used as the precursors to precisely construct the ternary metal sulfides of ZnS/ZnIn2S4/In2S3 with well maintained ZAIS QDs through an in situ sulfurization combining subsequent Zn(II)-exchange strategy. When the optimized nanocomposites (QDs@M-t-Zn, where t is the sulfurization time) were applied in visible light-induced photocatalytic hydrogen generation, the resulting QDs@M-24h-Zn showed a significantly improved hydrogen evolution rate of 448.96 μmol g-1 h-1, which values are clearly higher than those of MIL-68(In), QDs@MIL-68(In), and M-24h-Zn without the presence of ZAIS QDs. To elucidate the increased photocatalytic mechanism, the optical patterns and the batch electrochemical investigations were combined. It has been discovered that the matching band potentials and the close contact heterojunction enhance interface charge transfer, which in turn encourages photocatalytic hydrogen production. This study demonstrates the well-thought-out design of the uniform confinement architecture inherited from MOF QD-assisted multinary metal sulfides photocatalysts.
Collapse
Affiliation(s)
- Boyi Yan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Wenkang Di
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Zhongqiao Sun
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Yide Han
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Hao Meng
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Xia Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| |
Collapse
|
4
|
Zang S, Cai X, Zang Y, Jing F, Lu Y, Tang S, Lin F, Mo L. ZnIn 2S 4 Heterojunctions Constructed with In-MOF Precursor for Photocatalytic Hydrogen Evolution without Cocatalysts. Inorg Chem 2024; 63:6546-6554. [PMID: 38535616 DOI: 10.1021/acs.inorgchem.4c00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Znln2S4 has great prospects for photocatalytic water splitting to hydrogen by visible light. Herein, a novel Znln2S4-In-MOF (ZnInMS4) photocatalyst is elaborately synthesized by in situ method with In-MOF as the template and In3+ as the source. ZnInMS4 overcomes the fast interface charge recombination and a sluggish charge lifetime via the formed heterojunctions. Photoelectrochemical measurements reveal that the charge-transfer kinetics is enhanced since In-MOF is introduced to act as a reliable charge-transport channel. ZnInMS4 exhibits outstanding cocatalyst-free H2 evolution rate of 70 μmol h-1 under irradiation (λ > 420 nm), which is 3.2-fold higher than that of Znln2S4. In addition, the ZnInMS4 photocatalyst shows good stability in the 16 h continuous reaction. This work illustrates the feasibility of the MOF precursor instead of inorganic salts to directly synthesize photocatalysts with high performance.
Collapse
Affiliation(s)
- Shaohong Zang
- Donghai Laboratory, Zhoushan 316021, China
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - Xiaorong Cai
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - Yixian Zang
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - Fei Jing
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - Youwei Lu
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - Shuting Tang
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - Feng Lin
- College of Chemical and Materials Engineering, Quzhou University, Quzhou 324000, China
| | - Liuye Mo
- Institute of Innovation & Application, National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| |
Collapse
|
5
|
Song YJ, Sang YL, Xu KY, Hu HL, Zhu QQ, Li G. Ligand-Functionalized MIL-68-type Indium(III) Metal-Organic Frameworks with Prominent Intrinsic Proton Conductivity. Inorg Chem 2024; 63:4233-4248. [PMID: 38377313 DOI: 10.1021/acs.inorgchem.3c04370] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Indium-based metal-organic frameworks (In-MOFs) have now become an attractive class of porous solids in materials science and electrochemistry due to their diverse structures and promising applications. In the field of proton conduction, to find more crystalline MOFs with splendid proton-conductive properties, herein, five three-dimensional isostructural In-MOFs, MIL-68-In or MIL-68-In-X (X = NH2, OH, Br, or NO2) using terephthalic acid (H2BDC) or functionalized terephthalic acids (H2BDC-X) as multifunctional linkages were efficiently fabricated. First, the outstanding structural stability of the five MOFs, including thermal and water stability, was verified by thermal analysis and powder X-ray diffraction. Subsequently, the H2O-mediated proton conductivities (σ) were fully assessed and compared. Notably, their σ evinced a significant positive correlation between the temperature or relative humidity (RH) and varied with the functional groups on the organic ligands. Impressively, their highest σ values are up to 10-3-10-4 S/cm (100 °C/98% RH) and change in this order: MIL-68-In-OH (1.72 × 10-3 S/cm) > MIL-68-In-NH2 (1.70 × 10-3 S/cm) > MIL-68-In-NO2 (4.47 × 10-4 S/cm) > MIL-68-In-Br (4.11 × 10-4 S/cm) > MIL-68-In (2.37 × 10-4 S/cm). Finally, the computed activation energy values under 98 or 68% RHs are assessed, and the related proton conduction mechanisms are speculated. Moreover, after electrochemical testing, these MOFs illustrate remarkable structural rigidity, laying a meritorious material foundation for future applications.
Collapse
Affiliation(s)
- Yong-Jie Song
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Ya-Li Sang
- College of Chemistry and Life Science, Chifeng University, Chifeng 024000, P. R. China
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, Chifeng 024000, P. R. China
| | - Kai-Yin Xu
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Hai-Liang Hu
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, P. R. China
| | - Qian-Qian Zhu
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Gang Li
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
6
|
Peng Y, Lin J, Niu JL, Guo X, Chen Y, Hu T, Cheng J, Hu Y. Synergistic Effect of Ion Doping and Type-II Heterojunction Construction and Ciprofloxacin Degradation by MIL-68(In,Bi)-NH 2@BiOBr under Visible Light. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2351-2364. [PMID: 38175742 DOI: 10.1021/acsami.3c16037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Heterojunction structure and ion doping techniques are viable tactics in facilitating the generation and separation of photogenerated electrons and holes in photocatalysis. In the current study, a novel Bi ion-doped MIL-68(In,Bi)-NH2@BiOBr (MIBN@BOB) type-II heterojunction was first synthesized in a one-step solvothermal reaction. Doping of Bi ions not only broadened the light-sensing range but also provided reliable anchor sites for the in situ growth of BiOBr. Meanwhile, the heterostructure supplied new channels for photogenerated carriers, accelerating the transfer and inhibiting the recombination of photogenerated electron-hole. The obtained MIBN@BOB exhibited enhanced photocatalytic performance (91.1%) than MIL-68(In)-NH2 (40.8%) and BiOBr (57.5%) in ciprofloxacin (CIP) degradation under visible light, with excellent reusability. Photocatalysts were characterized in detail, and a series of photoelectrochemical tests were utilized to analyze the photoelectric properties. MIBN@BOB were deduced to conform the electron conduction mechanism of conventional type-II heterojunctions. More importantly, based on the above experiments and density functional theory (DFT) calculation, BiOBr-Bi in MIBN@BOB can serve as the major active sites of CIP enrichment, and •O2- and 1O2 generated at the BiOBr interface can react with the adsorbed CIP directly. Lastly, the possible degradation products and pathways of CIP were analyzed by liquid chromatography-tandem mass spectrometry (LC/MS/MS). This study provides a reference for the construction of ion-doping-modified metal-organic framework (MOF)-based heterojunction photocatalysts and their application in antibiotic removal.
Collapse
Affiliation(s)
- Yongjun Peng
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jialiang Lin
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ji-Liang Niu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaolan Guo
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yazhen Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Tongke Hu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jianhua Cheng
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- South China Institute of Collaborative Innovation, Dongguan 523808, China
| | - Yongyou Hu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
7
|
Yao L, Yu Y, Xu X, Du Z, Yang T, Hu J, Huang H. In-situ construction of WS 2/ZIF-8 composites with an electron-rich interface for enhancing nitrogen photofixation. J Colloid Interface Sci 2024; 654:189-200. [PMID: 37839236 DOI: 10.1016/j.jcis.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Photocatalytic nitrogen reduction reaction (PNRR) is an environmentally friendly synthesis method. It has been regarded as a promising approach for future NH3 preparation, which can reduce the natural fuel consumption and pollution of the Haber Bosch process. Nevertheless, this method exists poor activity for mass production, so it is urgent but challenging to explore highly efficient catalysts. Here, the novel WS2/ZIF-8 composites are reported, DFT and XPS indicate the transfer direction of electrons is from ZIF-8 to WS2, forming an electron-rich interface between WS2 and ZIF-8, thus it endows the more powerful photocatalytic nitrogen reduction ability for 2-WS2/ZIF-8 than monomer material. Meanwhile, 2-WS2/ZIF-8 exhibits admirable photocatalytic nitrogen reduction performance under real and simulated sunlight or in tap water, further attesting its excellent stability and practicability.
Collapse
Affiliation(s)
- Lin Yao
- State Key Laboratory of Metastable Materials Science & Technology, Hebei Key Laboratory of Heavy Metal Deep Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China.
| | - Yanming Yu
- State Key Laboratory of Metastable Materials Science & Technology, Hebei Key Laboratory of Heavy Metal Deep Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China.
| | - Xin Xu
- State Key Laboratory of Metastable Materials Science & Technology, Hebei Key Laboratory of Heavy Metal Deep Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China.
| | - Zhenhang Du
- State Key Laboratory of Metastable Materials Science & Technology, Hebei Key Laboratory of Heavy Metal Deep Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China.
| | - Tao Yang
- Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang 332005, PR China.
| | - Jie Hu
- State Key Laboratory of Metastable Materials Science & Technology, Hebei Key Laboratory of Heavy Metal Deep Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China.
| | - Hao Huang
- State Key Laboratory of Metastable Materials Science & Technology, Hebei Key Laboratory of Heavy Metal Deep Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China.
| |
Collapse
|
8
|
Sun Q, Zhu Y, Zhong X, Wang Y, Jiang M, Jia Z, Yao J. Dual Heterojunction of Etched MIL-68(In)-NH 2 Supported Heptazine-/Triazine-Based Carbon Nitride for Improved Visible-Light Nitrogen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305481. [PMID: 37658518 DOI: 10.1002/smll.202305481] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Indexed: 09/03/2023]
Abstract
This work reports a dual heterojunction of etched MIL-68(In)-NH2 (MN) supported heptazine-/triazine-based carbon nitride (HTCN) via a facile hydrothermal process for photocatalytic ammonia (NH3 ) synthesis. By applying the hydrothermal treatment, MN microrods are chemically etched into hollow microtubes, and HTCN with nanorod array structures are simultaneously tightly anchored on the outside surface of the microtubes. With the addition of 9 wt% HTCN, the resulting dual heterojunction presents an enhanced photocatalytic ammonia yield rate of 5.57 mm gcat -1 h-1 with an apparent quantum efficiency of 10.89% at 420 nm. Moreover, stable ammonia generation using seawater, tap water, lake water, and turbid water in the absence of sacrificial reagents verifies the potential of the dual-heterojunction composites as a commercially viable photosystem. The obtained one-dimensional (1D) microtubes and coating of HTCN confers this unique composite with extended visible-light harvesting and accelerated charge carrier migration via a multi-stepwise charge transfer pathway. This work provides a new strategy for optimizing nitrogen (N2 )-into-ammonia conversion efficiency by designing novel dual-heterojunction catalysts.
Collapse
Affiliation(s)
- Qiufan Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuxiang Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiang Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Meng Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhengtao Jia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jianfeng Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|