1
|
Yang L, Wang H. High-performance electrically responsive artificial muscle materials for soft robot actuation. Acta Biomater 2024; 185:24-40. [PMID: 39025393 DOI: 10.1016/j.actbio.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Traditional robotic devices are often bulky and rigid, making it difficult for them to adapt to the soft and complex shapes of the human body. In stark contrast, soft robots, as a burgeoning class of robotic technology, showcase exceptional flexibility and adaptability, positioning them as compelling contenders for a diverse array of applications. High-performance electrically responsive artificial muscle materials (ERAMMs), as key driving components of soft robots, can achieve efficient motion and deformation, as well as more flexible and precise robot control, attracting widespread attention. This paper reviews the latest advancements in high-performance ERAMMs and their applications in the field of soft robot actuation, using ionic polymer-metal composites and dielectric elastomers as typical cases. Firstly, the definition, characteristics, and electro-driven working principles of high-performance ERAMMs are introduced. Then, the material design and synthesis, fabrication processes and optimization, as well as characterization and testing methods of the ERAMMs are summarized. Furthermore, various applications of two typical ERAMMs in the field of soft robot actuation are discussed in detail. Finally, the challenges and future directions in current research are analyzed and anticipated. This review paper aims to provide researchers with a reference for understanding the latest research progress in high-performance ERAMMs and to guide the development and application of soft robots. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Liang Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Hong Wang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China.
| |
Collapse
|
2
|
Deng Q, Du T, Gomaa H, Cheng Y, An C. Methods of Manipulation of Acoustic Radiation Using Metamaterials with a Focus on Polymers: Design and Mechanism Insights. Polymers (Basel) 2024; 16:2405. [PMID: 39274037 PMCID: PMC11396993 DOI: 10.3390/polym16172405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
The manipulation of acoustic waves is becoming increasingly crucial in research and practical applications. The coordinate transformation methods and acoustic metamaterials represent two significant areas of study that offer innovative strategies for precise acoustic wave control. This review highlights the applications of these methods in acoustic wave manipulation and examines their synergistic effects. We present the fundamental concepts of the coordinate transformation methods and their primary techniques for modulating electromagnetic and acoustic waves. Following this, we deeply study the principle of acoustic metamaterials, with particular emphasis on the superior acoustic properties of polymers. Moreover, the polymers have the characteristics of design flexibility and a light weight, which shows significant advantages in the preparation of acoustic metamaterials. The current research on the manipulation of various acoustic characteristics is reviewed. Furthermore, the paper discusses the combined use of the coordinate transformation methods and polymer acoustic metamaterials, emphasizing their complementary nature. Finally, this article envisions future research directions and challenges in acoustic wave manipulation, considering further technological progress and polymers' application potential. These efforts aim to unlock new possibilities and foster innovative ideas in the field.
Collapse
Affiliation(s)
- Qibo Deng
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Tianying Du
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Hassanien Gomaa
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Yong Cheng
- Hebei Key Laboratory of Mechanical Reliability for Heavy Equipments and Large Structures, Yanshan University, Qinhuangdao 066004, China
| | - Cuihua An
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
3
|
Das S, Kunjam P, Moling B, Gao T, Barthelat F. Stiff morphing composite beams inspired from fish fins. Interface Focus 2024; 14:20230072. [PMID: 39081621 PMCID: PMC11285607 DOI: 10.1098/rsfs.2023.0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/20/2024] [Accepted: 05/02/2024] [Indexed: 08/02/2024] Open
Abstract
Morphing materials are typically either very compliant to achieve large shape changes or very stiff but with small shape changes that require large actuation forces. Interestingly, fish fins overcome these limitations: fish fins do not contain muscles, yet they can change the shape of their fins with high precision and speed while producing large hydrodynamic forces without collapsing. Here, we present a 'stiff' morphing beam inspired from the individual rays in natural fish fins. These synthetic rays are made of acrylic (PMMA) outer beams ('hemitrichs') connected with rubber ligaments which are 3-4 orders of magnitude more compliant. Combinations of experiments and models of these synthetic rays show strong nonlinear geometrical effects: the ligaments are 'mechanically invisible' at small deformations, but they delay buckling and improve the stability of the ray at large deformations. We use the models and experiments to explore designs with variable ligament densities, and we generate design guidelines for optimum morphing shape (captured using the first moment of curvature), that capture the trade-offs between morphing compliance (ease of morphing the structure) and flexural stiffness. The design guidelines proposed here can help the development of stiff morphing bioinspired structures for a variety of applications in aerospace, biomedicine or robotics.
Collapse
Affiliation(s)
- Saurabh Das
- Department of Mechanical Engineering, University of Colorado, 427 UCB, 1111 Engineering Dr, Boulder, CO80309, USA
| | - Prashant Kunjam
- Department of Mechanical Engineering, University of Colorado, 427 UCB, 1111 Engineering Dr, Boulder, CO80309, USA
| | - Baptiste Moling
- Department of Mechanical Engineering, University of Colorado, 427 UCB, 1111 Engineering Dr, Boulder, CO80309, USA
- Ecole Polytechnique, Route de Saclay, Palaiseau91128, France
| | - Tian Gao
- Department of Mechanical Engineering, University of Colorado, 427 UCB, 1111 Engineering Dr, Boulder, CO80309, USA
| | - Francois Barthelat
- Department of Mechanical Engineering, University of Colorado, 427 UCB, 1111 Engineering Dr, Boulder, CO80309, USA
| |
Collapse
|
4
|
Das S, Kunjam P, Ebeling JF, Barthelat F. Gradients of properties increase the morphing and stiffening performance of bioinspired synthetic fin rays. BIOINSPIRATION & BIOMIMETICS 2024; 19:046011. [PMID: 38722377 DOI: 10.1088/1748-3190/ad493c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
State-of-the-art morphing materials are either very compliant to achieve large shape changes (flexible metamaterials, compliant mechanisms, hydrogels), or very stiff but with infinitesimal changes in shape that require large actuation forces (metallic or composite panels with piezoelectric actuation). Morphing efficiency and structural stiffness are therefore mutually exclusive properties in current engineering morphing materials, which limits the range of their applicability. Interestingly, natural fish fins do not contain muscles, yet they can morph to large amplitudes with minimal muscular actuation forces from the base while producing large hydrodynamic forces without collapsing. This sophisticated mechanical response has already inspired several synthetic fin rays with various applications. However, most 'synthetic' fin rays have only considered uniform properties and structures along the rays while in natural fin rays, gradients of properties are prominent. In this study, we designed, modeled, fabricated and tested synthetic fin rays with bioinspired gradients of properties. The rays were composed of two hemitrichs made of a stiff polymer, joined by a much softer core region made of elastomeric ligaments. Using combinations of experiments and nonlinear mechanical models, we found that gradients in both the core region and hemitrichs can increase the morphing and stiffening response of individual rays. Introducing a positive gradient of ligament density in the core region (the density of ligament increases towards the tip of the ray) decreased the actuation force required for morphing and increased overall flexural stiffness. Introducing a gradient of property in the hemitrichs, by tapering them, produced morphing deformations that were distributed over long distances along the length of the ray. These new insights on the interplay between material architecture and properties in nonlinear regimes of deformation can improve the designs of morphing structures that combine high morphing efficiency and high stiffness from external forces, with potential applications in aerospace or robotics.
Collapse
Affiliation(s)
- Saurabh Das
- Department of Mechanical Engineering, University of Colorado, 427 UCB, 1111 Engineering Dr, Boulder, CO 80309, United States of America
| | - Prashant Kunjam
- Department of Mechanical Engineering, University of Colorado, 427 UCB, 1111 Engineering Dr, Boulder, CO 80309, United States of America
| | - Jona Faye Ebeling
- Department of Mechanical Engineering, University of Colorado, 427 UCB, 1111 Engineering Dr, Boulder, CO 80309, United States of America
- Department of Nature and Engineering, City University of Applied Sciences Bremen, Hermann-Köhl-Straße 1, 28199 Bremen, Germany
| | - Francois Barthelat
- Department of Mechanical Engineering, University of Colorado, 427 UCB, 1111 Engineering Dr, Boulder, CO 80309, United States of America
| |
Collapse
|
5
|
Xia D, Li Y, Li Z, Tian M, Wang X. Development of a Variable-Configuration Bionic Robotic Fish. Biomimetics (Basel) 2023; 8:407. [PMID: 37754158 PMCID: PMC10526870 DOI: 10.3390/biomimetics8050407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
Bionic robotic fish have advantages over traditional underwater propulsion. Most of the existing studies have been conducted with only one type of fish as a bionic object, but a single propulsion mode may not be able to achieve the different needs of underwater operations. In this paper, we designed a pneumatic variable-configuration soft bionic fish and completed the overall structure design. It was built with a cownose ray as the main-configuration bionic object and a Caranx melampygus as the secondary-configuration bionic object. The base structure, actuators, and variable-configuration modules of the robot were made using flexible materials. After completing the design of the structure and control system of the robot, the prototype was manufactured and an underwater test was completed. The tests results indicated that the robot fish could achieve underwater linear propulsion and turning movements in both configurations. The maximum propulsion speed of the main configuration was 38.24 mm/s and the turning angle speed was 5.6°/s, and the maximum propulsion speed of its secondary configuration was 43.05 mm/s and the turning angle speed was 30°/s. The feasibility of the machine fish structure and control scheme were verified.
Collapse
Affiliation(s)
- Dan Xia
- School of Mechanical Engineering, Southeast University, Nanjing 210096, China; (Y.L.); (Z.L.); (X.W.)
| | | | | | - Mengqian Tian
- School of Mechanical Engineering, Southeast University, Nanjing 210096, China; (Y.L.); (Z.L.); (X.W.)
| | | |
Collapse
|
6
|
Ma S, Zhao Q, Ding M, Zhang M, Zhao L, Huang C, Zhang J, Liang X, Yuan J, Wang X, He G. A Review of Robotic Fish Based on Smart Materials. Biomimetics (Basel) 2023; 8:227. [PMID: 37366822 DOI: 10.3390/biomimetics8020227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
The present study focuses on summarizing the recent advancements in the field of fish swimming mode research and bionic robotic fish prototypes based on smart materials. It has been widely acknowledged that fish exhibit exceptional swimming efficiency and manoeuvrability compared to conventional underwater vehicles. In the pursuit of developing autonomous underwater vehicles (AUVs), conventional experimental methods often prove to be complex and expensive. Hence, the utilization of computer simulations for hydrodynamic modelling provides a cost-effective and efficient approach for analysing the swimming behaviour of bionic robotic fish. Additionally, computer simulations can provide data that are difficult to obtain through experimental methods. Smart materials, which integrate perception, drive, and control functions, are increasingly being applied to bionic robotic fish research. However, the utilization of smart materials in this field is still an area of ongoing research and several challenges remain unresolved. This study provides an overview of the current state of research on fish swimming modes and the development of hydrodynamic modelling. The application of four distinct types of smart materials in bionic robotic fish is then reviewed, with a focus on analysing the advantages and disadvantages of each material in driving swimming behaviour. In conclusion, the paper highlights the key technical challenges that must be addressed for the practical implementation of bionic robotic fish and provides insights into the potential future directions of this field.
Collapse
Affiliation(s)
- Shiwei Ma
- School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China
| | - Quanliang Zhao
- School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China
| | - Meixi Ding
- School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China
| | - Mengying Zhang
- School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China
| | - Lei Zhao
- School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China
| | - Can Huang
- School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China
| | - Jie Zhang
- School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China
| | - Xu Liang
- School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China
| | - Junjie Yuan
- School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China
| | - Xingtao Wang
- College of Engineering and Technology, Zunyi Normal University, Zunyi 563006, China
| | - Guangping He
- School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China
| |
Collapse
|
7
|
Cheng Z, Feng W, Zhang Y, Sun L, Liu Y, Chen L, Wang C. A Highly Robust Amphibious Soft Robot with Imperceptibility Based on a Water-Stable and Self-Healing Ionic Conductor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2301005. [PMID: 37027814 DOI: 10.1002/adma.202301005] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/21/2023] [Indexed: 05/30/2023]
Abstract
Dielectric elastomer actuators (DEAs) are widely exploited for actuating soft machines and granting soft robots with capability to operate in both underwater and on-land environments is important to make them adapt to more complex situations. Here, a DEA-driven, highly robust, amphibious imperceptible soft robot (AISR) based on an all-environment stable ionic conductive material is presented. A soft, self-healable, all-environment stable ionic conductor is developed by introducing cooperative ion-dipole interactions to provide underwater stability as well as efficient suppression of ion penetration. By tuning molecular structures of the material, a 50-time device lifetime increase compared with unmodified [EMI][TFSI]-based devices and excellent underwater actuating performance is achieved. With the synthesized ionic electrode, the DEA-driven soft robot exhibits amphibious functionality to traverse hydro-terrestrial regions. When encountering damage, the robot shows good resilience and can self-heal underwater and it also exhibits imperceptibility to light, sound, and heat.
Collapse
Affiliation(s)
- Zhe Cheng
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 10084, China
| | - Wenwen Feng
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 10084, China
| | - Yucheng Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 10084, China
| | - Lin Sun
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 10084, China
| | - Yuncong Liu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 10084, China
| | - Lili Chen
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 10084, China
| | - Chao Wang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 10084, China
| |
Collapse
|