1
|
Fornerod MJJ, Alvarez-Fernandez A, Füredi M, Rajendran AA, Prieto-Simón B, Voelcker NH, Guldin S. Block copolymer-assembled nanopore arrays enable ultrasensitive label-free DNA detection. NANOSCALE HORIZONS 2025; 10:760-769. [PMID: 39905896 PMCID: PMC11795167 DOI: 10.1039/d4nh00466c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/06/2025] [Indexed: 02/06/2025]
Abstract
DNA detection via nanoporous-based electrochemical biosensors is a promising method for rapid pathogen identification and disease diagnosis. These sensors detect electrical current variations caused by DNA hybridization in a nanoporous layer on an electrode. Current fabrication techniques for the typically micrometers-thick nanoporous layer often suffer from insufficient control over nanopore dimensions and involve complex fabrication steps, including handling and stacking of a brittle porous membrane. Here, we introduce a bottom-up fabrication process based on the self-assembly of high molecular weight block copolymers with sol-gel precursors to create an inorganic nanoporous thin film directly on electrode surfaces. This approach eliminates the need for elaborate manipulation of the nanoporous membrane, provides fine control over the structural features, and enables surface modification with DNA capture probes. Using this nanoarchitecture with a thickness of 150 nm, we detected DNA sequences derived from 16S rRNA gene fragments of the E. coli genome electrochemically in less than 20 minutes, achieving a limit of detection of 30 femtomolar (fM) and a limit of quantification of 500 fM. This development marks a significant step towards a portable, rapid, and accurate DNA detection system.
Collapse
Affiliation(s)
| | - Alberto Alvarez-Fernandez
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
- Materials Physics Center (MPC) - CSICUPV/EHU, Paseo Manuel de Lardizabal 5, Donostia-San Sebastián (Gipuzkoa), 20018, Spain
| | - Máté Füredi
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
- Semilab Co. Ltd., Prielle Kornélia u. 2, Budapest, 1117, Hungary
| | | | - Beatriz Prieto-Simón
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Av. Països Catalans, 16, Tarragona, 43007, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, 3168, Australia
| | - Stefan Guldin
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
- Technical University of Munich, Department of Life Science Engineering, Gregor-Mendel-Straße 4, Freising, 85354, Germany
- TUMCREATE, 1 CREATE Way, Singapore 138602, Singapore
| |
Collapse
|
2
|
Füredi M, Manzano CV, Marton A, Fodor B, Alvarez-Fernandez A, Guldin S. Beyond the Meso/Macroporous Boundary: Extending Capillary Condensation-Based Pore Size Characterization in Thin Films Through Tailored Adsorptives. J Phys Chem Lett 2024; 15:1420-1427. [PMID: 38290522 PMCID: PMC10860133 DOI: 10.1021/acs.jpclett.3c03442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/01/2024]
Abstract
The characterization of thin films containing nanopores with diameters exceeding 50 nm poses significant challenges, especially when deploying sorption-based techniques. Conventional volumetric physisorption or mercury intrusion methods have limited applicability in thin films due to constraints in sample preparation and nondestructive testing. In this context, ellipsometric porosimetry represents a viable alternative, leveraging its optical sensitivity to thin films. With existing setups relying on the capillary condensation of volatile compounds such as water, applicability is typically restricted to pore dimensions <50 nm. In this study, we introduce two high-molar-mass hydrocarbon adsorptives, namely ethylbenzene and n-nonane. These adsorptives exhibit substantial potential in improving the accuracy of physisorption measurements beyond mesoporosity (i.e., >50 nm). Specifically, with n-nonane, applicability is extended up to 80 nm pores. Our measurement guidelines propose a nondestructive, expeditious (<60 min), low-pressure (<0.03 bar) approach to investigate nanoporous thin films with potential adaptability to diverse structural architectures.
Collapse
Affiliation(s)
- Máté Füredi
- Department
of Chemical Engineering, University College
London, Torrington Place, London, WC1E 7JE, United Kingdom
- Semilab
Co. Ltd., Prielle Kornélia u. 2, H-1117 Budapest, Hungary
| | - Cristina V. Manzano
- Instituto
de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, E-28760 Madrid, Spain
| | - András Marton
- Semilab
Co. Ltd., Prielle Kornélia u. 2, H-1117 Budapest, Hungary
| | - Bálint Fodor
- Semilab
Co. Ltd., Prielle Kornélia u. 2, H-1117 Budapest, Hungary
| | - Alberto Alvarez-Fernandez
- Centro
de Física de Materiales (CFM) (CSIC−UPV/EHU) −
Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Stefan Guldin
- Department
of Chemical Engineering, University College
London, Torrington Place, London, WC1E 7JE, United Kingdom
| |
Collapse
|
3
|
Papiano I, De Zio S, Hofer A, Malferrari M, Mínguez Bacho I, Bachmann J, Rapino S, Vogel N, Magnabosco G. Nature-inspired functional porous materials for low-concentration biomarker detection. MATERIALS HORIZONS 2023; 10:4380-4388. [PMID: 37465878 DOI: 10.1039/d3mh00553d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Nanostructuration is a promising tool for enhancing the performance of sensors based on electrochemical transduction. Nanostructured materials allow for increasing the surface area of the electrode and improving the limit of detection (LOD). In this regard, inverse opals possess ideal features to be used as substrates for developing sensors, thanks to their homogeneous, interconnected pore structure and the possibility to functionalize their surface. However, overcoming the insulating nature of conventional silica inverse opals fabricated via sol-gel processes is a key challenge for their application as electrode materials. In this work, colloidal assembly, atomic layer deposition and selective surface functionalization are combined to design conductive inverse opals as an electrode material for novel glucose sensing platforms. An insulating inverse opal scaffold is coated with uniform layers of conducting aluminum zinc oxide and platinum, and subsequently functionalized with glucose oxidase embedded in a polypyrrole layer. The final device can sense glucose at concentrations in the nanomolar range and is not affected by the presence of common interferents gluconolactone and pyruvate. This method may also be applied to different conductive materials and enzymes to generate a new class of highly efficient biosensors.
Collapse
Affiliation(s)
- Irene Papiano
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany.
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Simona De Zio
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - André Hofer
- Chair 'Chemistry of Thin Film Materials' (CTFM), Friedrich-Alexander University Erlangen-Nürnberg (FAU), IZNF, Cauerstraße 3, 91058 Erlangen, Germany
| | - Marco Malferrari
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Ignacio Mínguez Bacho
- Chair 'Chemistry of Thin Film Materials' (CTFM), Friedrich-Alexander University Erlangen-Nürnberg (FAU), IZNF, Cauerstraße 3, 91058 Erlangen, Germany
| | - Julien Bachmann
- Chair 'Chemistry of Thin Film Materials' (CTFM), Friedrich-Alexander University Erlangen-Nürnberg (FAU), IZNF, Cauerstraße 3, 91058 Erlangen, Germany
| | - Stefania Rapino
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Nicolas Vogel
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany.
| | - Giulia Magnabosco
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany.
| |
Collapse
|
4
|
Jara Fornerod M, Alvarez-Fernandez A, Michalska M, Papakonstantinou I, Guldin S. Glucose Oxidase Loading in Ordered Porous Aluminosilicates: Exploring the Potential of Surface Modification for Electrochemical Glucose Sensing. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:7577-7587. [PMID: 37780408 PMCID: PMC10536975 DOI: 10.1021/acs.chemmater.3c01202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/22/2023] [Indexed: 10/03/2023]
Abstract
Enzymatic electrochemical sensors have become the leading glucose detection technology due to their rapid response, affordability, portability, selectivity, and sensitivity. However, the performance of these sensors is highly dependent on the surface properties of the electrode material used to store glucose oxidase and its ability to retain enzymatic activity under variable environmental conditions. Mesoporous thin films have recently attracted considerable attention as promising candidates for enzyme storage and activity preservation due to their well-defined nanoarchitecture and tunable surface properties. Herein, we systematically compare pathways for the immobilization of glucose oxidase (GOx) and their effectiveness in electrochemical glucose sensing, following modification protocols that lead to the electrostatic attraction (amino functionalization), covalent bonding (aldehyde functionalization), and electrostatic repulsion (oxygen plasma treatment) of the ordered porous aluminosilicate-coated electrodes. By direct comparison using a quartz crystal microbalance, we demonstrate that glucose oxidase can be loaded in a nanoarchitecture with a pore size of ∼50 nm and pore interconnections of ∼35 nm using the native aluminosilicate surface, as well as after amino or aldehyde surface modification, while oxygen plasma exposure of the native surface inhibits glucose oxidase loading. Despite a variety of routes for enzyme loading, quantitative electrochemical glucose sensing between 0 and 20 mM was only possible when the porous surface was functionalized with amino groups, which we relate to the role of surface chemistry in accessing the underlying substrate. Our results highlight the impact of rational surface modification on electrochemical biosensing performance and demonstrate the potential of tailoring porous nanoarchitecture surfaces for biosensing applications.
Collapse
Affiliation(s)
| | - Alberto Alvarez-Fernandez
- Department
of Chemical Engineering, University College
London, Torrington Place, London WC1E 7JE, U.K.
| | - Martyna Michalska
- Department
of Electronic & Electrical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K.
| | - Ioannis Papakonstantinou
- Department
of Electronic & Electrical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K.
| | - Stefan Guldin
- Department
of Chemical Engineering, University College
London, Torrington Place, London WC1E 7JE, U.K.
| |
Collapse
|
5
|
Scala-Benuzzi M, Fernández SN, Giménez G, Ybarra G, Soler-Illia GJAA. Ordered Mesoporous Electrodes for Sensing Applications. ACS OMEGA 2023; 8:24128-24152. [PMID: 37457464 PMCID: PMC10339336 DOI: 10.1021/acsomega.3c02013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023]
Abstract
Electrochemical sensors have become increasingly relevant in fields such as medicine, environmental monitoring, and industrial process control. Selectivity, specificity, sensitivity, signal reproducibility, and robustness are among the most important challenges for their development, especially when the target compound is present in low concentrations or in complex analytical matrices. In this context, electrode modification with Mesoporous Thin Films (MTFs) has aroused great interest in the past years. MTFs present high surface area, uniform pore distribution, and tunable pore size. Furthermore, they offer a wide variety of electrochemical signal modulation possibilities through molecular sieving, electrostatic or steric exclusion, and preconcentration effects which are due to mesopore confinement and surface functionalization. In order to fully exploit these advantages, it is central to develop reproducible routes for sensitive, selective, and robust MTF-modified electrodes. In addition, it is necessary to understand the complex mass and charge transport processes that take place through the film (particularly in the mesopores, pore surfaces, and interfaces) and on the electrode in order to design future intelligent and adaptive sensors. We present here an overview of MTFs applied to electrochemical sensing, in which we address their fabrication methods and the transport processes that are critical to the electrode response. We also summarize the current applications in biosensing and electroanalysis, as well as the challenges and opportunities brought by integrating MTF synthesis with electrode microfabrication, which is critical when moving from laboratory work to in situ sensing in the field of interest.
Collapse
Affiliation(s)
- María
L. Scala-Benuzzi
- INTI-Micro
y Nanotecnologías, Instituto Nacional
de Tecnología Industrial, Av. Gral. Paz 5445, 1560 San Martín, Buenos
Aires, Argentina
- Instituto
de Nanosistemas, Escuela de Bio y Nanotecnologías, UNSAM-CONICET, Av. 25 de Mayo 1169, 1650 San Martín, Provincia de Buenos Aires, Argentina
| | - Sol N. Fernández
- INTI-Micro
y Nanotecnologías, Instituto Nacional
de Tecnología Industrial, Av. Gral. Paz 5445, 1560 San Martín, Buenos
Aires, Argentina
- Instituto
de Nanosistemas, Escuela de Bio y Nanotecnologías, UNSAM-CONICET, Av. 25 de Mayo 1169, 1650 San Martín, Provincia de Buenos Aires, Argentina
- Instituto
de Calidad Industrial (INCALIN-UNSAM), Av. 25 de Mayo y Francia, 1650 San Martín, Provincia
de Buenos Aires Argentina
| | - Gustavo Giménez
- INTI-Micro
y Nanotecnologías, Instituto Nacional
de Tecnología Industrial, Av. Gral. Paz 5445, 1560 San Martín, Buenos
Aires, Argentina
| | - Gabriel Ybarra
- INTI-Micro
y Nanotecnologías, Instituto Nacional
de Tecnología Industrial, Av. Gral. Paz 5445, 1560 San Martín, Buenos
Aires, Argentina
| | - Galo J. A. A. Soler-Illia
- Instituto
de Nanosistemas, Escuela de Bio y Nanotecnologías, UNSAM-CONICET, Av. 25 de Mayo 1169, 1650 San Martín, Provincia de Buenos Aires, Argentina
| |
Collapse
|
6
|
Ricciardi B, Mecheri B, da Silva Freitas W, Ficca VCA, Placidi E, Gatto I, Carbone A, Capasso A, D'Epifanio A. Porous Iron‐Nitrogen‐Carbon Electrocatalysts for Anion Exchange Membrane Fuel Cells (AEMFC). ChemElectroChem 2023. [DOI: 10.1002/celc.202201115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Beatrice Ricciardi
- Department of Chemical Science and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Barbara Mecheri
- Department of Chemical Science and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Williane da Silva Freitas
- Department of Chemical Science and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Valerio C. A. Ficca
- Department of Physics Sapienza University of Rome Piazzale Aldo Moro 2 00185 Rome Italy
| | - Ernesto Placidi
- Department of Physics Sapienza University of Rome Piazzale Aldo Moro 2 00185 Rome Italy
| | - Irene Gatto
- Institute for Advanced Energy Technologies “Nicola Giordano”-CNR-ITAE Via S. Lucia Sopra Contesse 5 98126 Messina Italy
| | - Alessandra Carbone
- Institute for Advanced Energy Technologies “Nicola Giordano”-CNR-ITAE Via S. Lucia Sopra Contesse 5 98126 Messina Italy
| | - Andrea Capasso
- International Iberian Nanotechnology Laboratory (INL) Braga 4715-330 Portugal
| | - Alessandra D'Epifanio
- Department of Chemical Science and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|