1
|
Hu T, Zhang K, Deng W, Guo W. Hydrovoltaic Effects from Mechanical-Electric Coupling at the Water-Solid Interface. ACS NANO 2024; 18:23912-23940. [PMID: 39168863 DOI: 10.1021/acsnano.4c07900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The natural water cycle on the Earth carries an enormous amount of energy as thirty-five percent of solar energy reaching the Earth's surface goes into water. However, only a very marginal part of the contained energy, mostly kinetic energy of large volume bulk water, is harvested by hydroelectric power plants. Natural processes in the water cycle, such as rainfall, water evaporation, and moisture adsorption, are widespread but have remained underexploited in the past due to the lack of appropriate technologies. In the past decade, the emergence of hydrovoltaic technology has provided ever-increasing opportunities to extend the technical capability for energy harvesting from the water cycle. Featuring electricity generation from mechanical-electric coupling at the water-solid interface, hydrovoltaic technology embraces almost all dynamic processes associated with water, including raining, waving, flowing, evaporating, and moisture adsorbing. This versatility in dealing with various forms of water and associated energy renders hydrovoltaic technology a solution for fossil fuel-caused environmental problems. Here, we review the current progress of hydrovoltaic energy harvesting from water motion, evaporation, and ambient moisture. Device configuration, energy conversion mechanism mediated by mechanical-electric coupling at various water-solid interfaces, as well as materials selection and functionalization are discussed. Useful strategies guided by established mechanisms for device optimization are then covered. Finally, we provide an outlook on this emerging field and outline the challenges of improving output performance toward potential practical applications.
Collapse
Affiliation(s)
- Tao Hu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Kelan Zhang
- Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Wei Deng
- Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Wanlin Guo
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
- Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| |
Collapse
|
2
|
Li SM, Qiu Y, Xie YM, Wang XT, Wang K, Cheng H, Zhang D, Zheng QN, Wang YH, Li JF. Synergistic Effects of TiO 2 and Carbon Black for Water Evaporation-Induced Electricity Generation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38706443 DOI: 10.1021/acsami.4c01026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Water evaporation-induced electricity generators (WEGs) have drawn widespread attention in the field of hydrovoltaic technology, which can convert atmospheric thermal energy into sustainable electric power. However, it is restricted in the wide application of WEGs due to the low power output, complex fabrication process, and high cost. Herein, we present a simple and effective approach to fabricate TiO2-carbon black film-based WEGs (TC-WEGs). A single TC-WEG device can sustainably output an open-circuit voltage of 1.9 V and a maximum power density of 40.9 μW/cm2. Moreover, it has been shown that TC-WEGs exhibit stable electrical energy output when operating in seawater, which can yield a short-circuit current of 1.2 μA. The superior electricity generation performance can be attributed to the intrinsic characteristics of the TC-WEGs, including hydrophilicity, porous structure, and electrical conductivity. This work provides an important reference for the constant harvesting of clean energy.
Collapse
Affiliation(s)
- Shu-Min Li
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Energy, Xiamen University, Xiamen 361005, China
| | - Yingru Qiu
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Energy, Xiamen University, Xiamen 361005, China
| | - Yi-Meng Xie
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Energy, Xiamen University, Xiamen 361005, China
| | - Xiao-Ting Wang
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Energy, Xiamen University, Xiamen 361005, China
| | - Kun Wang
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Energy, Xiamen University, Xiamen 361005, China
| | - Huan Cheng
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Dongao Zhang
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Energy, Xiamen University, Xiamen 361005, China
| | - Qing-Na Zheng
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Energy, Xiamen University, Xiamen 361005, China
| | - Yao-Hui Wang
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Energy, Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Energy, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
3
|
Haridas H, Kader AKA, Sellathurai A, Barz DPJ, Kontopoulou M. Noncovalent Functionalization of Graphene Nanoplatelets and Their Applications in Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16630-16640. [PMID: 38506515 DOI: 10.1021/acsami.3c18174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
We demonstrate a simple noncovalent functionalization technique, which involves graphite exfoliation and subsequent coating of the resulting graphene nanoplatelets (GNPs) with trimellitic anhydride (TMA), using a thermomechanical exfoliation process. TMA adsorbs on the surface of the GNPs, resulting in a reduction of the specific surface area to 312 ± 9 m2/g compared to 410 ± 12 m2/g for the unmodified GNPs. Detailed imaging, thermogravimetric, and X-ray diffraction analysis showed that the modified GNPs (TMA-GNPs) maintain similar structure to the unmodified GNPs. The presence of functional groups, confirmed by X-ray photoelectron spectroscopy analysis, caused an increase in the surface energy from 45.6 mJ/m2 for the GNPs to 57.9 mJ/m2 for TMA-GNPs. The resulting coated TMA-GNPs form stable dispersions in water while maintaining their inherent conductive properties, thus enabling applications, such as the manufacture of conductive films and supercapacitors. As a proof-of-concept, electrodes for supercapacitors are prepared from concentrated aqueous dispersions of the functionalized GNPs. Electrochemical characterization of the supercapacitors using electrochemical impedance spectroscopy, cyclic voltammetry and galvanostatic charge/discharge tests showed a specific capacitance of 22.2 F/cm3 at a scan rate of 1 mV/s from cyclic voltammetry and 17.3 F/cm3 at a current density of 1 A/g from galvanostatic charge/discharge tests, with a 90% capacitance retention after 10,000 cycles.
Collapse
Affiliation(s)
- Haritha Haridas
- Department of Chemical Engineering, Graphene Integrated Functional Technologies (GIFT), Smith Engineering, Queen's University, Dupuis Hall, 19 Division Street, Kingston, Ontario K7L 3N6, Canada
| | - Arsath Kose Abdul Kader
- Department of Chemical Engineering, Graphene Integrated Functional Technologies (GIFT), Smith Engineering, Queen's University, Dupuis Hall, 19 Division Street, Kingston, Ontario K7L 3N6, Canada
| | - Andrew Sellathurai
- Department of Chemical Engineering, Graphene Integrated Functional Technologies (GIFT), Smith Engineering, Queen's University, Dupuis Hall, 19 Division Street, Kingston, Ontario K7L 3N6, Canada
| | - Dominik P J Barz
- Department of Chemical Engineering, Graphene Integrated Functional Technologies (GIFT), Smith Engineering, Queen's University, Dupuis Hall, 19 Division Street, Kingston, Ontario K7L 3N6, Canada
| | - Marianna Kontopoulou
- Department of Chemical Engineering, Graphene Integrated Functional Technologies (GIFT), Smith Engineering, Queen's University, Dupuis Hall, 19 Division Street, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
4
|
Xue W, Zhao Z, Zhang S, Li Y, Wang X, Qiu J. Power Generation from the Interaction of a Carbon Foam and Water. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2825-2835. [PMID: 38176096 DOI: 10.1021/acsami.3c04726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Understanding the interaction mechanisms between the surface of carbon-based materials and water is of great significance for the development of water-based energy storage and energy conversion devices. Herein, a self-supporting electric generator is demonstrated based on water adsorption on the surface of the carbon foam (CF) that works with various water resources, including deionized (DI) water, tap water, wastewater, and seawater. It is revealed that the dissociation of oxygen-containing groups on the surface of CF after water molecule adsorption leads to a reduction of the surface potential of the CF. Through surface modulation techniques such as reduction and oxidation, a balance has been uncovered between the oxygen content and conductivity for the high-performance CFs. The generator can generate an open-circuit voltage of approximately 0.6 V in natural seawater with a power density of up to 0.77 mW g-1. A high voltage of more than 2 V can be achieved easily by assembling components connected in series to drive electronic devices, such as a light-emitting diode (LED). This work demonstrates a simple and low-cost method for electricity harvesting, offering an additional option for self-powered devices.
Collapse
Affiliation(s)
- Wan Xue
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zongbin Zhao
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Su Zhang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yong Li
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Xuzhen Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jieshan Qiu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
5
|
Li J, Chen Y, He S, Yang Y, Zheng C, Wang Y, Guo L. In-situ synthesis of porous Na 3V 2(PO 4) 3 with stable VOC bridge bonding by hard template method. J Colloid Interface Sci 2023; 650:1476-1489. [PMID: 37481785 DOI: 10.1016/j.jcis.2023.07.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Low electronic conductivity and poor properties at high rate have hindered the application of Na3V2(PO4)3 (NVP). Herein, a facile synthesis of NVP with porous carbon skeleton is proposed. Specifically, Na2CO3 and glucose, acting as hard templates, are introduced to the precursors after initial firing stage, and Na2CO3 particles are removed by flushing after the final heatment. Due to the thermal conductivity of Na2CO3, the secondary addition of glucose can generate distinctive graphitized porous carbon skeleton, which bonds well with the amorphous carbon coating to construct stable and conductive network. The porous construction can alleviate the stress and strain caused by the current impact through deformation. Furthermore, ex-situ EIS reveals the highly conductive carbon skeleton can significantly reduce the surface resistance and result in an increase of effective voltage to promote the de-intercalation of Na+. Moreover, the ex-situ X-ray photoelectron spectroscopy (XPS) at different potentials confirms the stabilized existence of VOC bonds. Benefiting from the unique carbon skeleton, the PC-NVP releases capacity of 116.9 mAh g-1 at 0.1C. Even at 120C, PC-NVP still exhibits a high capacity of 84.7 mAh g-1, retaining a value of 41.3 mAh g-1 after 16,000 cycles, corresponding to a low decay rate of 0.0032% per cycle.
Collapse
Affiliation(s)
- Jiahao Li
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China; Institute of Advanced Energy Materials and Systems, North University of China, Taiyuan 030051, China
| | - Yanjun Chen
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China; Institute of Advanced Energy Materials and Systems, North University of China, Taiyuan 030051, China.
| | - Shengnan He
- Xi'an Technological University, Institute of Science and Technology for New Energy, Xian 710021, China
| | - Yaxiong Yang
- Xi'an Technological University, Institute of Science and Technology for New Energy, Xian 710021, China
| | - Chao Zheng
- Xi'an Technological University, Institute of Science and Technology for New Energy, Xian 710021, China
| | - Yanzhong Wang
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China; Institute of Advanced Energy Materials and Systems, North University of China, Taiyuan 030051, China
| | - Li Guo
- Institute of Advanced Energy Materials and Systems, North University of China, Taiyuan 030051, China.
| |
Collapse
|
6
|
Yuan X, Bai G, Wang Y, Zeng X, Shao B, Wang Y, Sun B. Mapping Capillary Infiltration-Induced Potential in Water-Triggered Electric Generator Using an Electrical Probe Integrated Microscope. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307201. [PMID: 37950403 DOI: 10.1002/smll.202307201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Power generation from water-triggered capillary action in porous structures has recently geared extensive attention, offering the potential for generating electricity from ubiquitous water evaporation. However, conclusively establishing the nature of electrical generation and charge transfer is extremely challenging arising from the complicated aqueous solid-liquid interfacial phenomenon. Here, an electric probe-integrated microscope is developed to on-line monitor the correlation between water capillary action and potential values at any desired position of an active layer. With a probe spatial resolution reaching up to fifty micrometers, the internal factors prevailing over the potential distribution across the whole wet and dry regions are comprehensively identified. Further, the self-powered sensing capabilities of this integrated system are also demonstrated, including real-time monitoring of wind speed, environmental humidity, ionic strength, and inclination angle of generators. The combination of electric potential and chemical color indicator suggests that charge generation is likely correlated with ion-selective transport in the nanoporous channel during the water infiltration process. And unipolar ions (for instance protons) should be the dominant charge-transfer species. The work reveals the fundamental principles regulating charge generation/transfer during the water-triggered electric generation process.
Collapse
Affiliation(s)
- Xianrong Yuan
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Guilin Bai
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yanan Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xuelian Zeng
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Beibei Shao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yusheng Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Macau Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macau, 999078, P. R. China
| | - Baoquan Sun
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Macau Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macau, 999078, P. R. China
| |
Collapse
|