1
|
Wang X, Sun J. Engineering of Reversibly Cross-Linked Elastomers Toward Flexible and Recyclable Elastomer/Carbon Fiber Composites with Extraordinary Tearing Resistance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406252. [PMID: 39004888 DOI: 10.1002/adma.202406252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Carbon fiber (CF)-reinforced polymers (CFRPs) demonstrate potential for use in personal protective equipment. However, existing CFRPs are typically rigid, nonrecyclable, and lack of tearing resistance. In this study, flexible, recyclable, and tearing resistant polyurethane (PU)-CF composites are fabricated through complexation of reversibly cross-linked PU elastomer binders with CF fabrics. The PU-CF composites possess a high strength of 767 MPa and a record-high fracture energy of 2012 kJ m-2. The high performance of the PU-CF composites originates from the well-engineered PU elastomer binders that are obtained by cross-linking polytetrahydrofuran chains with in situ-formed nanodomains composed of hierarchical supramolecular interactions of hydrogen and coordination bonds. When subjected to tearing, the force concentrated on the damaged regions of the PU-CF composites can be effectively distributed to a wider area through the PU binders, leading to a significantly enhanced tearing resistance of the composites. The strong interfacial adhesion between PU binders and the CF fabrics enables the fracture of the CF in bundles, thereby significantly enhancing the strength and fracture energy of the composites. Because of the dynamic nature of the PU elastomer binders, the PU-CF composites can be recycled through the dissociation of the PU elastomer binders.
Collapse
Affiliation(s)
- Xiaohan Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
2
|
Feng P, Ma L, Zhang M, Quan Y, Li M, Zhou X, Liu X, Jian X, Xu J. Constructing a Novel Moderately Modulus "Rigid-Flexible" Structure with Synergistic Reinforcement on the Carbon Fiber Surface to Enhance the Mechanical Properties of Carbon Fiber/Epoxy Composites at Elevated Temperatures. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22747-22758. [PMID: 38635355 DOI: 10.1021/acsami.4c04051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
To improve the mechanical performance of carbon fiber (CF)/epoxy composites in high-temperature environments, a moderately modulus gradient modulus interlayer was constructed at the interface phase region of composites. This involved the design of a "rigid-flexible" synergistic reinforcement structure, incorporating rigid nanoparticle GO@CNTs and a flexible polymer polynaphthyl ether nitrile ketone onto the CF surface. Notably, at 180 °C, compared to commercial CF composites, the CF-GO@CNTs-PPENK composites displayed a remarkable improvement in their mechanical characteristics (interfacial shear, interlaminar shear, flexural strength, and modulus), achieving enhancements of 173.0, 91.5, 225.7, and 376.4%, respectively. The principal reason for this the moderately modulus interface phase composed of GO@CNTs-PPENK (where GO and CNTs predominantly consist of carbon atoms with sp2-hybridized orbitals, forming highly stable C-C structures, while PPENK possesses a "twisted non-coplanar" structure), which exhibited resistance to deformation at high temperatures. Moreover, it greatly improved the mechanical interlocking, wettability, and chemical compatibility between CF and the epoxy. It also played a crucial role in balancing and buffering the modulus disparity. The interface failure behavior and reinforcement mechanisms of the CF composites were analyzed. Furthermore, validation of the presence of a moderately modulus gradient interlayer at the interface phase region of CF-GO@CNTs-PPENK composites was performed by using atomic force microscopy. This study has established a theoretical foundation for the development of high-performance CF composites for use in high-temperature fields.
Collapse
Affiliation(s)
- Peifeng Feng
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Polymer Engineering Research Center, Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Qianwan Institute of CNITECH, Ningbo 315336, China
| | - Lichun Ma
- Institute of Polymer Materials, School of Material Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Mingguang Zhang
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Polymer Engineering Research Center, Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yiling Quan
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Polymer Engineering Research Center, Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Qianwan Institute of CNITECH, Ningbo 315336, China
| | - Mingzhuan Li
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Polymer Engineering Research Center, Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Qianwan Institute of CNITECH, Ningbo 315336, China
| | - Xin Zhou
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Qianwan Institute of CNITECH, Ningbo 315336, China
| | - Xingyao Liu
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Polymer Engineering Research Center, Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Qianwan Institute of CNITECH, Ningbo 315336, China
| | - Xigao Jian
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Polymer Engineering Research Center, Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jian Xu
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Polymer Engineering Research Center, Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Qianwan Institute of CNITECH, Ningbo 315336, China
| |
Collapse
|