1
|
Xie X, Briega-Martos V, Alemany P, Mohandas Sandhya AL, Skála T, Rodríguez MG, Nováková J, Dopita M, Vorochta M, Bruix A, Cherevko S, Neyman KM, Matolínová I, Khalakhan I. Balancing Activity and Stability through Compositional Engineering of Ternary PtNi-Au Alloy ORR Catalysts. ACS Catal 2025; 15:234-245. [PMID: 39781331 PMCID: PMC11705540 DOI: 10.1021/acscatal.4c05269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 01/12/2025]
Abstract
Achieving the optimal balance between cost-efficiency and stability of oxygen reduction reaction (ORR) catalysts is currently among the key research focuses aiming at reaching a broader implementation of proton-exchange membrane fuel cells (PEMFCs). To address this challenge, we combine two well-established strategies to enhance both activity and stability of platinum-based ORR catalysts. Specifically, we prepare ternary PtNi-Au alloys, where each alloying element plays a distinct role: Ni reduces costs and boosts ORR activity, while Au enhances stability. A systematic comparative analysis of the activity-stability relationship for compositionally tuned PtNi-Au model layers, prepared by magnetron co-sputtering, was conducted using a diverse range of complementary characterization techniques and electrochemistry, supported by density functional theory calculations. Our study reveals that a progressive increase of the Au concentration in the Pt50Ni50 alloy from 3 to 15 at % leads to opposing catalyst activity and stability trends. Specifically, we observe a decrease in the ORR activity accompanied by an increase in catalyst stability, manifested in the suppression of both Pt and Ni dissolution. Despite the reduced activity compared to PtNi, the PtNi-Au alloy with 15 at % Au still exhibits nearly three times the activity of monometallic Pt. It also demonstrates a significantly improved dissolution stability relative to that of the PtNi alloy and even monometallic Pt. These findings provide valuable insights into the intricate balance between activity and stability in multimetallic ORR catalysts, paving the way for the design of cost-effective and durable materials for PEMFCs.
Collapse
Affiliation(s)
- Xianxian Xie
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Valentín Briega-Martos
- Helmholtz
Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Julich GmbH, Cauerstr. 1, 91058 Erlangen, Germany
| | - Pere Alemany
- Departament
de Ciència de Materials i Química Física and
Institut de Quimica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1, 08028 Barcelona, Spain
| | - Athira Lekshmi Mohandas Sandhya
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Tomáš Skála
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Miquel Gamón Rodríguez
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Jaroslava Nováková
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Milan Dopita
- Department
of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, 12116 Prague 2, Czech Republic
| | - Michael Vorochta
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Albert Bruix
- Departament
de Ciència de Materials i Química Física and
Institut de Quimica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1, 08028 Barcelona, Spain
| | - Serhiy Cherevko
- Helmholtz
Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Julich GmbH, Cauerstr. 1, 91058 Erlangen, Germany
| | - Konstantin M. Neyman
- Departament
de Ciència de Materials i Química Física and
Institut de Quimica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1, 08028 Barcelona, Spain
- ICREA
(Institució Catalana de Recerca i Estudis Avançats), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Iva Matolínová
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Ivan Khalakhan
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| |
Collapse
|
2
|
Mymoona P, Shibu ES, Jeyabharathi C. Adsorbed Carbon Monoxide-Enabled Self-Terminated Au-Grafting on Pt 6 Nanoclusters for Enhanced Methanol Electrooxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401998. [PMID: 38973636 DOI: 10.1002/smll.202401998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/15/2024] [Indexed: 07/09/2024]
Abstract
The study presents the first example of an adsorbed carbon monoxide (CO) enabled self-terminated Au-grafting on triphenylphosphine (PPh3) stabilized Pt6 nanoclusters (NCs) (Pt6 (PPh3)4Cl5 NCs or Pt6 NCs). Adsorbed PPh3 ligands weaken the Pt-CO bond enabling the self-terminated Au-grafting on Pt6 NCs. The Au-grafted Pt6 NCs exhibit enhanced methanol electrooxidation (MOR) in acidic solutions. The surface is composed of a PtAu ensemble exhibiting enhanced MOR and CO tolerance due to the synergistic interaction of Pt with Au and PPh3. The hydrogen underpotential deposition (H-UPD) signal from a CO-covered surface reveals the existence of free-Pt sites on the PtAu ensemble causing higher MOR reactivity. The Au and PPh3 ensure electrocatalytic activity of the NCs, depriving of them at anodic potentials results in "a death-valley" trend.
Collapse
Affiliation(s)
- Paloli Mymoona
- Council of Scientific and Industrial Research (CSIR)-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Edakkattuparambil Sidharth Shibu
- Smart Materials Lab, Department of Nanoscience and Technology (DNST), University of Calicut (UoC), Malappuram, Kerala, 673635, India
| | - Chinnaiah Jeyabharathi
- Council of Scientific and Industrial Research (CSIR)-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
Farris R, Neyman KM, Bruix A. Determining the chemical ordering in nanoalloys by considering atomic coordination types. J Chem Phys 2024; 161:134114. [PMID: 39365020 DOI: 10.1063/5.0214377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/25/2024] [Indexed: 10/05/2024] Open
Abstract
The energetically most favorable chemical ordering of bimetallic nanoparticles can be characterized by combining global optimization algorithms and surrogate energy models. The latter approximate the energy of nanoalloys relying on structural descriptors, training models, and data. Here, we systematically evaluate the performance of highly data-efficient topological descriptors [Kozlov et al., Chem. Sci. 6, 3868 (2015)] for predicting the energies of metal nanoalloys with different chemical orderings. We also introduce a new descriptor based on atomic coordination types, which results in a less data-efficient and interpretable approach, but improves the general accuracy and the quantification of orderings in the inner parts of nanoparticles. The capacity of both the original and new approaches in combination with a basin hopping algorithm is illustrated by generating convex hulls of PdZn nanoalloys and predicting the resulting active surface site distribution as a function of particle composition. Finally, we show how these approaches can be combined with machine-learning adsorption models in electrocatalysis studies for a fast evaluation of the reactivity landscape of targeted nanoalloys.
Collapse
Affiliation(s)
- Riccardo Farris
- Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional (IQTC-UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Konstantin M Neyman
- Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional (IQTC-UB), Universitat de Barcelona, 08028 Barcelona, Spain
- ICREA (Institució Catalana de Recerca i Estudis Avançats), 08010 Barcelona, Spain
| | - Albert Bruix
- Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional (IQTC-UB), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
4
|
Neyman KM, Alemany P. Chemical Orderings in CuCo Nanoparticles: Topological Modeling Using DFT Calculations. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1242. [PMID: 39120347 PMCID: PMC11314349 DOI: 10.3390/nano14151242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024]
Abstract
The orderings of atoms in bimetallic 1.6-2.1 nm-large CuCo nanoparticles, important as catalytic and magnetic materials, were studied using a combination of DFT calculations with a topological approach. The structure and magnetism of Cu50Co151, Cu101Co100, Cu151Co50, and Cu303Co102 nanoparticles; their resistance to disintegrating into separate Cu and Co species; as well as the exposed surface sites, were quantified and analyzed, showing a clear preference for Cu atoms to occupy surface positions while the Co atoms tended to form a compact cluster in the interior of the nanoparticles. The surface segregation of Co atoms that are encapsulated by less-active Cu atoms, induced by the adsorption of CO molecules, was already enabled at a low coverage of adsorbed CO, providing the energy required to displace the entire compact Co species inside the Cu matrices due to a notable adsorption preference of CO for the Co sites over the Cu ones. The calculated adsorption energies and vibrational frequencies of adsorbed CO should be helpful indicators for experimentally monitoring the nature of the surface sites of CuCo nanoparticles, especially in the case of active Co surface sites emerging in the presence of CO.
Collapse
Affiliation(s)
- Konstantin M. Neyman
- ICREA (Institució Catalana de Recerca i Estudis Avançats), Pg. Lluís Companys 23, 08010 Barcelona, Spain
- Departament de Ciència de Materials i Química Física and Institut de Quimica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1, 08028 Barcelona, Spain;
| | - Pere Alemany
- Departament de Ciència de Materials i Química Física and Institut de Quimica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1, 08028 Barcelona, Spain;
| |
Collapse
|
5
|
Farris R, Merinov BV, Bruix A, Neyman KM. Effects of Zr dopants on properties of PtNi nanoparticles for ORR catalysis: A DFT modeling. J Chem Phys 2024; 160:124706. [PMID: 38530007 DOI: 10.1063/5.0193848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/08/2024] [Indexed: 03/27/2024] Open
Abstract
Pt-based alloys, such as Pt3Ni, are among the best electrocatalysts for oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells. Doping of PtNi alloys with Zr was shown to enhance the durability of the operating ORR catalysts. Rationalizing these observations is hindered by the absence of atomic-level data for these tri-metallic materials, even when not exposed to the fuel cell operation conditions. This study aims at understanding structure-property relations in Zr-doped PtNi nanoparticles as a key to their ORR function. In particular, we calculated, using a method based on density functional theory, the most stable chemical orderings of pristine and Zr-doped Pt3Ni particles containing over 400 atoms. We thus clarify (i) preferential location and charge states of Zr atoms in the Pt3Ni NPs; (ii) effect of doping Zr atoms on the stability of the Pt skin of the Pt3Ni NPs; (iii) charge redistribution induced by Zr dopants; (iv) layer-by-layer atomic ordering in the Pt3Ni/Zr NPs with the increasing Zr content; and (v) effect of Zr atoms on the adsorption energies of O and OH species as indicators of the ORR activity.
Collapse
Affiliation(s)
- Riccardo Farris
- Departament de Ciència de Materials i Química Física and Institut de Quimica Teòrica i Computacional, Universitat de Barcelona, c/Martí i Franquès 1, 08028 Barcelona, Spain
| | - Boris V Merinov
- Materials and Process Simulation Center, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, USA
| | - Albert Bruix
- Departament de Ciència de Materials i Química Física and Institut de Quimica Teòrica i Computacional, Universitat de Barcelona, c/Martí i Franquès 1, 08028 Barcelona, Spain
| | - Konstantin M Neyman
- Departament de Ciència de Materials i Química Física and Institut de Quimica Teòrica i Computacional, Universitat de Barcelona, c/Martí i Franquès 1, 08028 Barcelona, Spain
- ICREA (Institució Catalana de Recerca i Estudis Avançats), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|