1
|
Luo X, Yuan P, Xiao H, Li S, Luo J, Li J, Lai W, Chen Y, Li D. Effects of Intrinsic Defects in Pt-Based Carbon Supports on Alkaline Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26044-26056. [PMID: 38717586 DOI: 10.1021/acsami.4c00690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Carbon material has widely been utilized in the synthesis of efficient carbon-supported Pt (Pt/C) catalysts, in which the structural properties greatly influence the electrocatalytic performances of Pt/C catalysts. However, the effects of intrinsic defects in carbon supports on the performance of the alkaline hydrogen evolution reaction (HER) have not been systematically investigated. Herein, porous carbon supports with different degrees of intrinsic defects were prepared by a simple template-assisted strategy, and the resulting samples were systematically studied by various analytical methods. The results suggested that the presence of abundant intrinsic defects (vacancy and topological defects) in the carbon support was advantageous in terms of favoring the dispersion and anchoring of Pt species, promoting electron transfer between Pt atoms and the carbon support, and tuning the electronic states of Pt species. These features improved the HER performance of Pt/C catalysts. Compared to the nontemplate-assisted carbon-supported Pt catalyst (Pt/NTC) with an overpotential of 178 mV, the optimized template-assisted carbon-supported Pt catalyst (Pt/TC) exhibited a lower overpotential of 58 mV at 10 mA cm-2. Besides, the Pt/TC catalyst displayed better HER durability than the Pt/NTC catalyst owing to its strong metal-support interaction. The DFT calculations confirmed the important role played by intrinsic defects (vacancy and topological defects) in stabilizing Pt atoms, with Pt-C3 coordination identified as the most favorable structure for improving the HER performance of Pt. Overall, novel insights on the significant contribution of intrinsic defects in porous carbon supports on the HER performances of Pt/C catalysts were provided, useful for future design and fabrication of advanced carbon-supported catalysts or other carbon-based electrode materials.
Collapse
Affiliation(s)
- Xianyou Luo
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Ping Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Haoming Xiao
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Shengwei Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Junhui Luo
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Junyi Li
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Wende Lai
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Yong Chen
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - De Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
2
|
Tian Z, Liu H, Cheng M, Cui L, Zhang R, Yang X, Wu D, Wang D, Xia J. Ethanol as Solvent Additives with Competitive Effect for High-Stable Aqueous Zinc Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21857-21867. [PMID: 38635974 DOI: 10.1021/acsami.4c01484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Aqueous zinc-ion batteries are emerging as promising sustainable energy-storage devices. However, their cyclic stability is still a great challenge due to the inevitable parasitic reaction and dendrite growth induced by water. Herein, a cosolvent strategy based on competitive effect is proposed to address the aforementioned challenges. Ethanol with a higher Gutmann donor number demonstrates lower polarity and better wettability on the Zn surface compared with water, which endows ethanol with the ability of minimizing water activity by weakening H bonds and preferentially adsorbing on the Zn electrode. The above competitive advantages synergistically contribute to inhibiting the decomposition of free water and dendrite growth. Besides, an organic-inorganic hybrid solid-electrolyte interphase layer is in situ built based on ethanol additives, where organic matrix suppresses water corrosion while inorganic fillers promote fast Zn2+ diffusion. Consequently, the electrolyte with ethanol additives boosts a high reversibility of Zn deposition, long-term durability, as well as superior Zn2+ diffusibility in both Zn half-cells (Zn||Cu and Zn||Zn batteries) and Zn full cells (Zn||PTCDA and Zn||VO2 batteries). This work sheds light on a universal strategy to design a high-reversible and dendrite-free Zn anode for stable aqueous batteries.
Collapse
Affiliation(s)
- Zhuocheng Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, P.R. China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Hang Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, P.R. China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Mengyuan Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, P.R. China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Lianmeng Cui
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Rongyu Zhang
- College of Science, Shenyang Aerospace University, Shenyang 110135, P.R. China
| | - Xu Yang
- College of Science, Shenyang Aerospace University, Shenyang 110135, P.R. China
| | - Di Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, P.R. China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Dongxue Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, P.R. China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Jianlong Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, P.R. China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, P.R. China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P.R. China
| |
Collapse
|
3
|
Lan S, Yu C, Yu J, Zhang X, Liu Y, Xie Y, Wang J, Qiu J. Recent Advances in Low‐Temperature Liquid Electrolyte for Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2309286. [PMID: 38453682 DOI: 10.1002/smll.202309286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/20/2024] [Indexed: 03/09/2024]
Abstract
As one of the key components of supercapacitors, electrolyte is intensively investigated to promote the fast development of the energy supply system under extremely cold conditions. However, high freezing point and sluggish ion transport kinetics for routine electrolytes hinder the application of supercapacitors at low temperatures. Resultantly, the liquid electrolyte should be oriented to reduce the freezing point, accompanied by other superior characteristics, such as large ionic conductivity, low viscosity and outstanding chemical stability. In this review, the intrinsically physical parameters and microscopic structure of low-temperature electrolytes are discussed thoroughly, then the previously reported strategies that are used to address the associated issues are summarized subsequently from the aspects of aqueous and non-aqueous electrolytes (organic electrolyte and ionic liquid electrolyte). In addition, some advanced spectroscopy techniques and theoretical simulation to better decouple the solvation structure of electrolytes and reveal the link between the key physical parameters and microscopic structure are briefly presented. Finally, the further improvement direction is put forward to provide a reference and guidance for the follow-up research.
Collapse
Affiliation(s)
- Shuqin Lan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Chang Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jinhe Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Xiubo Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yingbin Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yuanyang Xie
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jianjian Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jieshan Qiu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
4
|
Yan B, Zhao W, Zhang Q, Kong Q, Chen G, Zhang C, Han J, Jiang S, He S. One stone for four birds: A "chemical blowing" strategy to synthesis wood-derived carbon monoliths for high-mass loading capacitive energy storage in low temperature. J Colloid Interface Sci 2024; 653:1526-1538. [PMID: 37804620 DOI: 10.1016/j.jcis.2023.09.179] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
Biomass-derived carbon materials are promising electrode materials for capacitive energy storage. Herein, inspired by the hierarchical structure of natural wood, carbon monoliths built up by interconnected porous carbon nanosheets with enriched vertical channels were obtained via zinc nitrate (Zn(NO3)2)-assisted synthesis and served as thick electrodes for capacitive energy storage. Zn(NO3)2 is proved to function as expansion agent, activator, dopant, and precursor of the template. The dense and micron-scale thickness walls of wood were expanded by Zn(NO3)2 into porous and interconnected nanosheets. The pore volume and specific surface area were increased by more than 430 %. The initial specific capacitance and rate performance of the optimized carbon monolith was approximately three times that of the pristine dense carbon framework. The assembled symmetric supercapacitor possessed a high initial specific capacitance of 4564 mF cm-2 (0-1.7 V) at -40 °C. Impressively, the robust device could be cycled more than 100,000 times with little capacitance attenuation. The assembled zinc-ion hybrid capacitor (0.2-2 V) delivered a large specific capacitance of 4500 mF cm-2 at -40 °C, approximately 74 % of its specific capacitance at 25 °C. Our research paves a new avenue to design thick carbon electrodes with high capacitive performance by multifunctional Zn(NO3)2 for low-temperature applications.
Collapse
Affiliation(s)
- Bing Yan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Zhao
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qian Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Qinying Kong
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Guoqing Chen
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jingquan Han
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaohua Jiang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shuijian He
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|