1
|
Zhao L, Zhang J, Jin G, Jiang ZJ, Jiang Z. Metal-organic framework-derived trimetallic particles encapsulated by ultrathin nitrogen-doped carbon nanosheets on a network of nitrogen-doped carbon nanotubes as bifunctional catalysts for rechargeable zinc-air batteries. J Colloid Interface Sci 2024; 668:525-539. [PMID: 38691962 DOI: 10.1016/j.jcis.2024.04.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
Economical oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) bifunctional catalysts with high activity aimed at replacing precious metal catalysts for rechargeable zinc-air batteries (ZABs) must be developed. In this study, a multiple hierarchical-structural material is developed using a facile dielectric barrier discharge (DBD) plasma surface treatment, solvothermal reaction, and high-temperature carbonization strategy. This strategy allows for the construction of nanosheets using nitrogen-doped carbon (NC) material-encapsulated ternary CoNiFe alloy nanoparticles (NPs) on a network of NC nanotubes (NCNTs), denoted as CoNiFe-NC@p-NCNTs. Precisely, the presence of abundant CoNiFe alloy NPs and the formation of M-N-C active sites created by transition metals (cobalt, nickel, and iron) coupled with NC can provide superior OER/ORR bifunctional properties. Moreover, the prepared NC layers with a multilevel pore structure contribute to a larger specific surface area, exposing numerous active sites and enhancing the uniformity of electron and mass movement. The CoNiFe0.08-NC@p-NCNTs show remarkable dual functionality for electrochemical oxygen reactions (ORR half-wave potential of 0.811 V, limiting current density of 5.73 mA cm-2 measured with a rotating disk electrode at a rotation speed of 1600 rpm, and OER overpotential of 351 mV at 10 mA cm-2), which demonstrates similar ORR performance to 20 wt% Pt/C and better OER performance than the commercial RuO2. A liquid ZAB prepared using the proposed material has excellent bifunctionality with an open-circuit voltage of 1.450 V and long-term cycling stability of 230 h@10 mA cm-2.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Jianping Zhang
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Guangri Jin
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Zhong-Jie Jiang
- Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy Materials & Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| | - Zhongqing Jiang
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
2
|
Liu X, Huo S, Xu X, Wang X, Zhang W, Chen Y, Wang C, JiahaoXie, Liu X, Chang H, Zou J. Carbon nanotube-encapsulated Co/Co 3Fe 7 heterojunctions as a highly-efficient bifunctional electrocatalyst for rechargeable zinc-air batteries. J Colloid Interface Sci 2024; 666:296-306. [PMID: 38603873 DOI: 10.1016/j.jcis.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
In oxygen electrocatalysis, how to rationally design low-cost catalysts with reasonable structure and long-term stability is a crucial issue. Here, an in-situ growth strategy is used to construct a shaped structure encapsulating a uniformly-dispersed Co/Co3Fe7 heterojunction in nitrogen-doped carbon nanotubes (Co/Co3Fe7@NCNTs). Hollow CoFe layered-double-hydroxide prisms act as sacrifices for in-situ growth of Co/Co3Fe7 nanoparticles, which also catalyze the growth of bamboo-like NCNTs. Tubular structure not only accelerates the charge transfer through the interactions between Co and Co3Fe7, but also limits the aggregation of the particles, thereby promoting the 4e- oxygen reduction/evolution reactions (ORR/OER) kinetics and stabilizing the bifunctional activity. Co/Co3Fe7@NCNTs-800 (pyrolyzed at 800 °C) shows exceptional ORR activity (half-wave potential of 0.89 V) and methanol tolerance. Meanwhile, Co/Co3Fe7@NCNTs-800 shows a small OER overpotential of 280 mV, which increases by only 9 mV after 1000 cyclic voltammetry (CV) cycles. The outstanding bifunctionality (potential gap of 0.62 V) is ascribed to the electronic structure modulation at the Co/Co3Fe7 heterointerface. Notably, it also has a high performance as an air-cathode for rechargeable zinc-air battery, showing high power density (165 mW cm-2) and specific capacity (770.5 m Ah kg-1). This work provides a new reference for promoting the development of alloy catalysts with heterogeneous interfaces.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Sichen Huo
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Xiaoqin Xu
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Xinyu Wang
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Wanyu Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yanjie Chen
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Cheng Wang
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Guangdong University of Technology, Guangzhou 510006, China.
| | - JiahaoXie
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Xueting Liu
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Haiyang Chang
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Jinlong Zou
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
3
|
Yi S, Xin R, Li X, Sun Y, Yang M, Liu B, Chen H, Li H, Liu Y. " Setaria viridis"-like cobalt complex derived Co/N-doped carbon nanotubes as efficient ORR/OER electrocatalysts for long-life rechargeable Zn-air batteries. NANOSCALE 2023; 15:16612-16618. [PMID: 37815101 DOI: 10.1039/d3nr03421f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The development of efficient and facile strategies to prepare metal and nitrogen codoped carbon (M-N-C) materials as oxygen electrocatalysts in rechargeable Zn-air batteries with high performance and a long life is challenging. Herein, we report a simple route to synthesize cobalt and nitrogen codoped carbon nanotubes (denoted as Co/N-CNT) as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries (ZABs). The Co/N-CNT are fabricated through the surface modification of carbon nanotubes with cobalt salt and melamine followed by pyrolysis, which delivers outstanding oxygen reduction/evolution reaction (ORR/OER) activity with a low overall potential gap (ΔE = 0.77 V) and remarkable durability. The home-made Zn-air batteries exhibit a high power density (130 mW cm-2vs. 82 mW cm-2), a large specific capacity of (864 mA h g-1Znvs. 785 mA h g-1Zn), and a long cycling life (1200 h vs. 60 h) in both aqueous and solid media. This work opens an avenue for the reasonable surface modification of carbon nanotubes with various metals and heteroatoms to achieve high-performance electrocatalysts for clean and sustainable energy conversion and storage devices.
Collapse
Affiliation(s)
- Shicheng Yi
- College of Chemistry, Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, and Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, P. R. China.
| | - Rong Xin
- College of Chemistry, Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, and Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, P. R. China.
| | - Xuxin Li
- College of Chemistry, Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, and Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, P. R. China.
| | - Yuying Sun
- College of Chemistry, Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, and Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, P. R. China.
| | - Mei Yang
- College of Chemistry, Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, and Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, P. R. China.
| | - Bei Liu
- College of Chemistry, Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, and Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, P. R. China.
| | - Hongbiao Chen
- College of Chemistry, Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, and Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, P. R. China.
| | - Huaming Li
- College of Chemistry, Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, and Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, P. R. China.
| | - Yijiang Liu
- College of Chemistry, Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, and Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, P. R. China.
| |
Collapse
|