1
|
Sohail A, Nunthakitgoson W, Klinyod S, Thivasasith A, Prasertsab A, Chaipornchalerm P, Prasanseang W, Srisuwanno W, Mano P, Ittisanronnachai S, Namuangruk S, Wattanakit C. Simultaneous Electrochemical Upgrading of Biomass and CO 2 Utilization Using Fe/Ni-Derived Carbon Nanotubes Derived from CO 2. Angew Chem Int Ed Engl 2025; 64:e202501404. [PMID: 40069103 DOI: 10.1002/anie.202501404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/28/2025] [Accepted: 03/11/2025] [Indexed: 03/21/2025]
Abstract
Fossil fuel consumption has caused petroleum shortages and increased carbon emissions; thus, utilizing renewable resources in biorefineries for biomass-derived chemical synthesis is promising. Among them, 2,5-furandicarboxylic acid (FDCA) is a key alternative to terephthalic acid (PTA) for sustainable polyester production. In this work, we demonstrate an efficient approach for the simultaneous production of FDCA while utilizing carbon dioxide (CO₂) via an electrochemical approach. Complete electrooxidation of hydroxymethylfurfural (HMF) at the anode yields FDCA, while CO₂ reduction at the cathode produces valuable compounds such as carbon monoxide (CO). This concurrent HMF electrooxidation and CO₂ electroreduction strategy enables high-value chemical production at mild conditions. In addition, we developed efficient single catalysts, FeNi metals supported on CO₂-derived multi-walled carbon nanotubes deposited on nickel foam (FeNiCNTs/NF) as both the anode and the cathode for HMF oxidation and CO2 reduction, respectively. Remarkably, faradaic efficiencies reached 99.60% for FDCA (FEFDCA) at the anode and 96.25% for CO (FECO) at the cathode. This study highlights the effective use of synthesized non-noble metals supported on CO₂-derived CNTs for integrated biorefinery and CO₂ utilization.
Collapse
Affiliation(s)
- Anousha Sohail
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Watinee Nunthakitgoson
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Sorasak Klinyod
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Anawat Thivasasith
- Frontier Research Center (FRC), Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Anittha Prasertsab
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Peeranat Chaipornchalerm
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Warot Prasanseang
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Wanmai Srisuwanno
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Poobodin Mano
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Somlak Ittisanronnachai
- Frontier Research Center (FRC), Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Supawadee Namuangruk
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Chularat Wattanakit
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| |
Collapse
|
2
|
Huddleston M, Sun Y. Biomass Valorization via Paired Electrocatalysis. CHEMSUSCHEM 2025; 18:e202402161. [PMID: 39591501 DOI: 10.1002/cssc.202402161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 11/28/2024]
Abstract
Electrochemical valorization of biomass represents an emerging research frontier, capitalizing on renewable feedstocks to mitigate carbon emissions. Traditional electrochemical approaches often suffer from energy inefficiencies due to the requirement of a second electrochemical conversion at the counter electrode which might generate non-value-added byproducts. This review article presents the advancement of paired electrocatalysis as an alternative strategy, wherein both half-reactions in an electrochemical cell are harnessed to concurrently produce value-added chemicals from biomass-derived feedstocks, potentially doubling the Faradaic efficiency of the whole process. The operational principles and advantages of different cell configurations, including 1-compartment undivided cells, H-type cells, and flow cells, in the context of paired electrolysis are introduced and compared, followed by the analysis of various catalytic strategies, from catalyst-free systems to sophisticated homogeneous and heterogeneous electrocatalysts, tailored for optimized performance. Key substrates, such as CO2, 5-hydroxymethylfurfural (HMF), furfural, glycerol, and lignin are highlighted to demonstrate the versatility and efficacy of paired electrocatalysis. This work aims to provide a clear understanding of why and how both cathode and anode reactions can be effectively utilized in electrocatalytic biomass valorization leading to innovative industrial scalability.
Collapse
Affiliation(s)
- Morgan Huddleston
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, 45221, USA
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, 45221, USA
| |
Collapse
|
3
|
Basak HK, Adak MK, Rajput A, Chakraborty B. Low Pt Loading on Wolframite-Type NiWO 4 to Excel the Electrocatalytic Water Splitting and Ammonia Oxidation Reaction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9391-9406. [PMID: 39874301 DOI: 10.1021/acsami.4c20564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Hydrogen production via water-splitting or ammonia electrolysis using transition metal-based electrodes is one of the most cost-effective approaches. Herein, ca. 1-4% of Pt atoms are stuffed into a wolframite-type NiWO4 lattice to improve the electrocatalytic efficiency. The co-existence of atomically dilute quantities of Pt0 and PtIV atoms in the NiWO4 without altering the lattice structure is established via powder X-ray diffraction, inductively coupled plasma mass spectrometry (ICP-MS), core-level X-ray photoelectron spectroscopy, and other spectroscopic studies. While the undoped NiWO4 and a physical mixture of Pt0 (2 wt %) and NiWO4 exhibit poor oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and ammonia oxidation reaction (AOR) activities, 3-4% Pt-enriched NiWO4 depict improved electrocatalytic performances with at least 50 mV overpotential drop for both the OER and HER. The 3%Pt/NiWO4 electrode showcases a long-term (for 110 h) chronoamperometric/chronopotentiometric OER and HER performance, delivering high current at a low working potential. The bifunctional behavior of the material leads to the development of a water-splitting electrolyzer, 3%Pt/NiW/NF(-)/(+)3%Pt/NiW/NF, achieving >90% Faradaic efficiency for H2 production. The onset potential for the AOR is also cathodically shifted for 3%Pt/NiW and 4%Pt/NiW compared to the NiWO4 itself. Electrokinetic study through a rotating ring-disk electrode (RRDE) experiment and the Koutecký-Levich study provides an observed rate constant (kobs) of 1.68 × 10-3 cm s-1 of AOR with a 6e- count from the kinetic current region, highlighting [NO2]- as the major product. The electrolysis of 1 M NH3 using 4%Pt/NiW/NF as a working electrode produces predominantly [NO2]- (FE: 53%) and [NO3]- (FE: 30%). The improved electrocatalytic activity of 3-4% Pt-enriched NiWO4 can be due to the low Tafel slope and charge transfer resistance (Rct). Pt0 being electron-rich induces facile electronic conduction during electrocatalysis and enhances a better binding of the analytes such as H2O, [OH]-, and NH3. At the same time, the PtIV centers present adjacent to the NiII sites can polarize the electron density to stabilize NiIII species and enhance the possibility of OER and AOR. This study demonstrates the effect of hetero-metal doping to tune the electronic structure to improve the electrochemical activity. The low-Pt-doped NiWO4 material is presented here as a multimodal electrocatalyst that can efficiently electrolyze water or ammonia to produce hydrogen.
Collapse
Affiliation(s)
- Hirak Kumar Basak
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Mrinal Kanti Adak
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Anubha Rajput
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Biswarup Chakraborty
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
4
|
Kundu A, Dhillon AK, Singh R, Barman S, Siddhanta S, Chakraborty B. Evolution of Mn-Bi 2O 3 from the Mn-doped Bi 3O 4Br electro(pre)catalyst during the oxygen evolution reaction. Dalton Trans 2024; 53:8020-8032. [PMID: 38651992 DOI: 10.1039/d4dt00633j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Mn-doped Bi3O4Br has been synthesized using a solvothermal route. The undoped Bi3O4Br and Mn-Bi3O4Br materials possess orthorhombic unit cells with two distinct Bi sites forming a layered atomic arrangement. The shift in the (020) plane in the powder X-ray diffraction (PXRD) pattern confirms Mn-doping in the Bi3O4Br lattice. Elemental mapping indicated 7% Mn doping in the Bi3O4Br lattice structure. A core-level X-ray photoelectron study (XPS) indicates the presence of BiIII and MnII valence-states in Mn-Bi3O4Br. Doping with a cation (MnII) containing a different charge and ionic radius resulted in vacancy/defects in Mn-Bi3O4Br which further altered its electronic structure by reducing the indirect band gap, beneficial for electron conduction and electrocatalysis. The irreversible MnII to MnIII transformation at a potential of 1.48 V (vs. RHE) precedes the electrochemical oxygen evolution reaction (OER). The Mn-doped electrocatalyst achieved 10 mA cm-2 current density at 337 mV overpotential, while the pristine Bi3O4Br required 385 mV overpotential to reach the same activity. The pronounced OER activity of the Mn-Bi3O4Br sample over the pristine Bi3O4Br highlights the necessity of MnII doping. The superior activity of the Mn-Bi3O4Br catalyst over that of Bi3O4Br is due to a low Tafel slope, better double-layer capacitance (Cdl), and small charge-transfer resistance (Rct). The chronoamperometry (CA) study depicts long-term stability for 12 h at 20 mA cm-2. An electrolyzer fabricated as Pt(-)/(+)Mn-Bi3O4Br can deliver 10 mA cm-2 at a cell potential of 2.05 V. The post-CA-OER analyses of the anode confirmed the leaching of [Br-] followed by in situ formation of Mn-doped Bi2O3 as the electrocatalytically active species. Herein, an ultra-low Mn-doping into Bi3O4Br leads to an improvement in the electrocatalytic performance of the inactive Bi3O4Br material.
Collapse
Affiliation(s)
- Avinava Kundu
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India.
| | - Ashish Kumar Dhillon
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India.
| | - Ruchi Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India.
| | - Sanmitra Barman
- Center for Advanced Materials and Devices (CAMD), BML Munjal University, Haryana, India.
| | - Soumik Siddhanta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India.
| | - Biswarup Chakraborty
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India.
| |
Collapse
|
5
|
Kundu A, Chakraborty B. Surface Structure to Tailor the Electrochemical Behavior of Mixed-Valence Copper Sulfides during Water Electrolysis. JACS AU 2024; 4:642-656. [PMID: 38425911 PMCID: PMC10900219 DOI: 10.1021/jacsau.3c00703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 03/02/2024]
Abstract
The semiconducting behavior of mixed-valence copper sulfides arises from the pronounced covalency of Cu-S bonds and the exchange coupling between CuI and CuII centers. Although electrocatalytic study with digenite Cu9S5 and covellite CuS has been performed earlier, detailed redox chemistry and its interpretation through lattice structure analysis have never been realized. Herein, nanostructured Cu9S5 and CuS are prepared and used as electrode materials to study their electrochemistry. Powder X-ray diffraction (PXRD) and microscopic studies have found the exposed surface of Cu9S5 to be d(0015) and d(002) for CuS. Tetrahedral (Td) CuII, distorted octahedral (Oh) CuII, and trigonal planar (Tp) CuI sites form the d(0015) surface of Cu9S5, while the (002) surface of CuS consists of only Td CuII. The distribution of CuI and CuII sites in the lattice, predicted by PXRD, can further be validated through core-level Cu 2p X-ray photoelectron spectroscopy (XPS). The difference in the electrochemical response of Cu9S5 and CuS arises predominantly from the different copper sites present in the exposed surfaces and their redox states. In situ Raman spectra recorded during cyclic voltammetric study indicates that Cu9S5 is more electrochemically labile compared to CuS and transforms rapidly to CuO/Cu2O. Contact-angle and BET analyses imply that a high-surface-energy and macroporous Cu9S5 surface favors the electrolyte diffusion, which leads to a pronounced redox response. Post-chronoamperometric (CA) characterizations identify the potential-dependent structural transformation of Cu9S5 and CuS to CuO/Cu2O/Cu(OH)2 electroactive species. The performance of the in situ formed copper-oxides towards electrocatalytic water-splitting is superior compared to the pristine copper sulfides. In this study, the redox chemistry of the Cu9S5/CuS has been correlated to the atomic arrangements and coordination geometry of the surface exposed sites. The structure-activity correlation provides in-depth knowledge of how to interpret the electrochemistry of metal sulfides and their in situ potential-driven surface/bulk transformation pathway to evolve the active phase.
Collapse
Affiliation(s)
- Avinava Kundu
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Biswarup Chakraborty
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
6
|
Chaudhary M, Adak MK, Dhananjay, Kumari N, Kundu A, Basak HK, Karmakar T, Chakraborty B. Elucidating the Role of Atomically Dilute Copper Centers Impregnating a Phosphamide Polymer for the Preferential Hydrogen Evolution Reaction over CO 2 Reduction. Inorg Chem 2024; 63:494-507. [PMID: 38145464 DOI: 10.1021/acs.inorgchem.3c03364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Organic polymers have attracted considerable interest in designing a multifunctional electrocatalyst. However, the inferior electro-conductivity of such metal-free polymers is often regarded as a shortcoming. Herein, a nitrogen- and phosphorus-rich polymer with phosphamide functionality (PAP) in the repeating unit has been synthesized from diaminopyridine (DAP) and phenylphosphonic dichloride (PPDC) precursors. The presence of phosphamide oxygen and pyridine nitrogen in the repeating unit of PAP leads to the coordination of the CuII ion and the incorporation of 3.29 wt % in the polymer matrix (Cu30@PAP) when copper salt is used to impregnate the polymer. Combined with a spectroscopic, microscopic, and DFT study, the coordination and geometry of copper in the PAP matrix has been established to be a distorted square planar CuII in a N2O2 ligand environment where phosphamide oxygen and pyridine nitrogen of the PAP coordinate to the metal center. The copper incorporation in the PAP modulates its electrocatalytic activity. On the glassy carbon electrode, PAP shows inferior activity toward the hydrogen evolution reaction (HER) in 0.5 M H2SO4 while 3 wt % copper incorporation (Cu30@PAP) significantly improves the HER performance with an overpotential of 114 mV at 10 mA cm-2. The notable electrochemical activity with Cu30@PAP occurs due to the impregnation of Cu(II) in PAP, improved electro-kinetics, and better charge transfer resistance (Rct). When changing the electrolyte from H2SO4 to CO2-saturated bicarbonate solution at nearly neutral pH, PAP shows HER as the dominant pathway along with the partial reduction of CO2 to formate. Moreover, the use of Cu30@PAP as an electrolcatalyst could not alter the predominant HER path, and only 20% Faradaic efficiency for the CO2 reduced products has been achieved. Post-chronoamperometric characterization of the recovered catalyst suggests an unaltered valence state of the copper ion and the intact chemical structure of PAP. DFT studies unraveled that the copper sites of Cu30@PAP promote water adsorption while phosphamide-NH of the PAP can weakly hold the CO2 adduct via a hydrogen bonding interaction. A detailed calculation has pointed out that the tetra-coordinated copper centers present in the PAP frame are the reactive sites and that the formation of the [CuI-H] intermediate is the rate-limiting step for both HER and its competitive side reaction, i.e., CO2 reduction to formate or CO formation. The high proton concentration in the electrolyte of pH < 7 leads to HER as the predominant pathway. This combined experimental and theoretical study has highlighted the crucial role of copper sites in electrocatalysis, emphasizing the plausible reason for electrocatalytic selectivity.
Collapse
Affiliation(s)
- Monika Chaudhary
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Mrinal Kanti Adak
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Dhananjay
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Nidhi Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Avinava Kundu
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hirak Kumar Basak
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Tarak Karmakar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Biswarup Chakraborty
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|