1
|
Zhao J, Zhang S, Dong J, Chen X, Zuo H, Li Y, Gao C, Zhao Z, Qiu X, Tang Z, Deng N, Zhao W, Ou J, Bian Y. Screening and identification of peptidyl arginine deiminase 4 inhibitors from herbal plants extracts and purified natural products by a trypsin assisted sensitive immunoassay based on streptavidin magnetic beads. Talanta 2024; 279:126611. [PMID: 39067202 DOI: 10.1016/j.talanta.2024.126611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Peptidyl arginine deiminase 4 (PAD4) plays a critical role in many autoimmune diseases including rheumatoid arthritis. Herein, a trypsin assisted highly immunoassay method was established to determine PAD4 activity and screen potent inhibitors from herbal plants extracts and purified natural products. The method was applied to determine endogenous PAD4 activity in both cell and tissue lysates, as well as the inhibitory effects of 20 herbal plants and 50 purified natural products. The Cinnamomi ramulus extract showed strongest inhibitory potency with IC50 value lower than 5 μg/mL. Meanwhile, pyrroloquinoline quinone (PQQ), widely used as a dietary supplement, was discovered as a promising PAD4 inhibitor with an IC50 value lower than 4 μM. The inhibition kinetic analysis, drug affinity response target stability (DARTS) and molecular docking were performed to confirm the interaction between PQQ and PAD4. This method has great potential for researchers to monitor activities and discover potential inhibitors of PAD4.
Collapse
Affiliation(s)
- Juanjuan Zhao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi Province, 710069, PR China
| | - Shengxiang Zhang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi Province, 710069, PR China
| | - Jianhui Dong
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi Province, 710069, PR China
| | - Xufei Chen
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi Province, 710069, PR China
| | - Haiyue Zuo
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi Province, 710069, PR China
| | - Yanfeng Li
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi Province, 710069, PR China
| | - Chunli Gao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi Province, 710069, PR China
| | - Zeyuan Zhao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi Province, 710069, PR China
| | - Xingtai Qiu
- Xiamen Jinnuohua Biotechnology Co., Ltd., Xiamen, Fujian, 361000, PR China
| | - Zichao Tang
- Xiamen Jinnuohua Biotechnology Co., Ltd., Xiamen, Fujian, 361000, PR China
| | - Nan Deng
- Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, PR China
| | - Weining Zhao
- School of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong, 518118, PR China.
| | - Junjie Ou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi Province, 710069, PR China.
| | - Yangyang Bian
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi Province, 710069, PR China.
| |
Collapse
|
2
|
Lenertz M, Li Q, Armstrong Z, Scheiwiller A, Ni G, Wang J, Feng L, MacRae A, Yang Z. Magnetic Multienzyme@Metal-Organic Material for Sustainable Biodegradation of Insoluble Biomass. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11617-11626. [PMID: 38410049 DOI: 10.1021/acsami.4c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Biodegradation of insoluble biomass such as cellulose via carbohydrase enzymes is an effective approach to break down plant cell walls and extract valuable materials therein. Yet, the high cost and poor reusability of enzymes are practical concerns. We recently proved that immobilizing multiple digestive enzymes on metal-organic materials (MOMs) allows enzymes to be reused via gravimetric separation, improving the cost efficiency of cereal biomass degradation [ACS Appl. Mater. Interfaces 2021, 13, 36, 43085-43093]. However, this strategy cannot be adapted for enzymes whose substrates or products are insoluble (e.g., cellulose crystals). Recently, we described an alternative approach based on magnetic metal-organic frameworks (MOFs) using model enzymes/substrates [ACS Appl. Mater. Interfaces 2020, 12, 37, 41794-41801]. Here, we aim to prove the effectiveness of combining these two strategies in cellulose degradation. We immobilized multiple carbohydrase enzymes that cooperate in cellulose degradation via cocrystallization with Ca2+, a carboxylate ligand (BDC) in the absence and presence of magnetic nanoparticles (MNPs). We then compared the separation efficiency and enzyme reusability of the resultant multienzyme@Ca-BDC and multienzyme@MNP-Ca-BDC composites via gravimetric and magnetic separation, respectively, and found that, although both composites were effective in cellulose degradation in the first round, the multienzyme@MNP-Ca-BDC composites displayed significantly enhanced reusability. This work provides the first experimental demonstration of using magnetic solid supports to immobilize multiple carbohydrase enzymes simultaneously and degrade cellulose and promotes green/sustainable chemistry in three ways: (1) reusing the enzymes saves energy/sources to prepare them, (2) the synthetic conditions are "green" without generating unwanted wastes, and (3) using our composites to degrade cellulose is the first step of extracting valuable materials from sustainable biomasses such as plants whose growth does not rely on nonregeneratable resources.
Collapse
Affiliation(s)
- Mary Lenertz
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Qiaobin Li
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Zoe Armstrong
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Allison Scheiwiller
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Gigi Ni
- Department of Chemistry and Chemical Biology, Harvard University, Boston, Massachusetts 02138, United States
| | - Jien Wang
- California State University, San Marcos, San Marcos, California 92096, United States
| | - Li Feng
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Austin MacRae
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| |
Collapse
|
3
|
Armstrong Z, Jordahl D, MacRae A, Li Q, Lenertz M, Shen P, Botserovska A, Feng L, Ugrinov A, Yang Z. A Protocol for Custom Biomineralization of Enzymes in Metal-Organic Frameworks (MOFs). Bio Protoc 2024; 14:e4930. [PMID: 38379827 PMCID: PMC10875352 DOI: 10.21769/bioprotoc.4930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/16/2023] [Accepted: 01/04/2024] [Indexed: 02/22/2024] Open
Abstract
Enzyme immobilization offers a number of advantages that improve biocatalysis; however, finding a proper way to immobilize enzymes is often a challenging task. Implanting enzymes in metal-organic frameworks (MOFs) via co-crystallization, also known as biomineralization, provides enhanced reusability and stability with minimal perturbation and substrate selectivity to the enzyme. Currently, there are limited metal-ligand combinations with a proper protocol guiding the experimental procedures. We have recently explored 10 combinations that allow custom immobilization of enzymes according to enzyme stability and activity in different metals/ligands. Here, as a follow-up of that work, we present a protocol for how to carry out custom immobilization of enzymes using the available combinations of metal ions and ligands. Detailed procedures to prepare metal ions, ligands, and enzymes for their co-crystallization, together with characterization and assessment, are discussed. Precautions for each experimental step and result analysis are highlighted as well. This protocol is important for enzyme immobilization in various research and industrial fields. Key features • A wide selection of metal ions and ligands allows for the immobilization of enzymes in metal-organic frameworks (MOFs) via co-crystallization. • Step-by-step enzyme immobilization procedure via co-crystallization of metal ions, organic linkers, and enzymes. • Practical considerations and experimental conditions to synthesize the enzyme@MOF biocomposites are discussed. • The demonstrated method can be generalized to immobilize other enzymes and find other metal ion/ligand combinations to form MOFs in water and host enzymes.
Collapse
Affiliation(s)
- Zoe Armstrong
- Department of Chemistry and Biochemistry, North
Dakota State University, Fargo, ND, USA
| | - Drew Jordahl
- Department of Chemistry and Biochemistry, North
Dakota State University, Fargo, ND, USA
| | - Austin MacRae
- Department of Chemistry and Biochemistry, North
Dakota State University, Fargo, ND, USA
| | - Qiaobin Li
- Department of Chemistry and Biochemistry, North
Dakota State University, Fargo, ND, USA
| | - Mary Lenertz
- Department of Chemistry and Biochemistry, North
Dakota State University, Fargo, ND, USA
| | | | | | - Li Feng
- Department of Chemistry and Biochemistry, North
Dakota State University, Fargo, ND, USA
| | - Angel Ugrinov
- Department of Chemistry and Biochemistry, North
Dakota State University, Fargo, ND, USA
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North
Dakota State University, Fargo, ND, USA
| |
Collapse
|
4
|
Li Q, Lenertz M, Armstrong Z, MacRae A, Feng L, Ugrinov A, Yang Z. A Protocol to Depict the Proteolytic Processes Using a Combination of Metal-Organic Materials (MOMs), Electron Paramagnetic Resonance (EPR), and Mass Spectrometry (MS). Bio Protoc 2024; 14:e4909. [PMID: 38213322 PMCID: PMC10777052 DOI: 10.21769/bioprotoc.4909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024] Open
Abstract
Proteolysis is a critical biochemical process yet a challenging field to study experimentally due to the self-degradation of a protease and the complex, dynamic degradation steps of a substrate. Mass spectrometry (MS) is the traditional way for proteolytic studies, yet it is challenging when time-resolved, step-by-step details of the degradation process are needed. We recently found a way to resolve the cleavage site, preference/selectivity of cleavage regions, and proteolytic kinetics by combining site-directed spin labeling (SDSL) of protein substrate, time-resolved two-dimensional (2D) electron paramagnetic resonance (EPR) spectroscopy, protease immobilization via metal-organic materials (MOMs), and MS. The method has been demonstrated on a model substrate and protease, yet there is a lack of details on the practical operations to carry out our strategy. Thus, this protocol summarizes the key steps and considerations when carrying out the EPR/MS study on proteolytic processes, which can be generalized to study other protein/polypeptide substrates in proteolysis. Details for the experimental operation and cautions of each step are reported with figures illustrating the concepts. This protocol provides an effective approach to understanding the proteolytic process with the advantages of offering time-resolved, residue-level resolution of structural basis underlying the process. Such information is important for revealing the cleavage site and proteolytic mechanisms of unknown proteases. The advantage of EPR, probing the target substrate regardless of the complexities caused by the proteases and their self-degradation, offers a practically effective, rapid, and easy-to-operate approach to studying proteolysis. Key features • Combining protease immobilization, EPR, spin labeling, and MS experimental methods allows for the analysis of proteolysis process in real time. • Reveals cleavage site, kinetics of product generation, and preference of cleavage regions via time-resolved SDSL-EPR. • MS confirms EPR findings and helps depict the sequences and populations of the cleaved segments in real time. • The demonstrated method can be generalized to other proteins or polypeptide substrates upon proteolysis by other proteases.
Collapse
Affiliation(s)
- Qiaobin Li
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58102, USA
| | - Mary Lenertz
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58102, USA
| | - Zoe Armstrong
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58102, USA
| | - Austin MacRae
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58102, USA
| | - Li Feng
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58102, USA
| | - Angel Ugrinov
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58102, USA
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58102, USA
| |
Collapse
|
5
|
Armstrong Z, MacRae A, Lenertz M, Li Q, Johnson K, Scheiwiller A, Shen P, Feng L, Quadir M, Yang Z. Impact of Crystallinity on Enzyme Orientation and Dynamics upon Biomineralization in Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38124-38131. [PMID: 37494658 DOI: 10.1021/acsami.3c07870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Aqueous-phase co-crystallization (also known as biomimetic mineralization or biomineralization) is a unique way to encapsulate large enzymes, enzyme clusters, and enzymes with large substrates in metal-organic frameworks (MOFs), broadening the application of MOFs as enzyme carriers. The crystallinity of resultant enzyme@MOF biocomposites, however, can be low, raising a concern about how MOF crystal packing quality affects enzyme performance upon encapsulation. The challenges to overcome this concern are (1) the limited database of enzyme performance upon biomineralization in different aqueous MOFs and (2) the difficulty in probing enzyme restriction and motion in the resultant MOF scaffolds, which are related to the local crystal packing quality/density, under the interference of the MOF backgrounds. We have discovered several new aqueous MOFs for enzyme biomineralization with varied crystallinity [Jordahl, D.; Armstrong, Z.; Li, Q.; Gao, R.; Liu, W.; Johnson, K.; Brown, W.; Scheiwiller, A.; Feng, L.; Ugrinov, A.; Mao, H.; Chen, B.; Quadir, M.; Pan, Y.; Li, H.; Yang, Z. Expanding the Library of Metal-Organic Frameworks (MOFs) for Enzyme Biomineralization. ACS Appl. Mater. Interfaces 2022, 14 (46), 51619-51629, DOI: 10.1021/acsami.2c12998]. Here, we address the second challenge by probing enzyme dynamics/restriction in these MOFs at the residue level via site-directed spin labeling (SDSL)-electron paramagnetic resonance (EPR) spectroscopy, a unique approach to determine protein backbone motions regardless of the background complexity. We encapsulated a model large-substrate enzyme, lysozyme, in eight newly discovered MOFs, which possess various degrees of crystallization, via aqueous-phase co-crystallization. Through the EPR study and simulations, we found rough connections between (a) enzyme mobility/dynamics and MOF crystal properties (packing quality and density) and (b) enzyme areas exposed above each MOF and their catalytic performance. This work suggests that protein SDSL and EPR can serve as an indicator of MOF crystal packing quality/density when biomineralized in MOFs. The method can be generalized to probing the dynamics of other enzymes on other solid surfaces/interfaces and guide the rational design of solid platforms (ca. MOFs) to customize enzyme immobilization.
Collapse
Affiliation(s)
- Zoe Armstrong
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Austin MacRae
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Mary Lenertz
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Qiaobin Li
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Kelley Johnson
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Allison Scheiwiller
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Patrick Shen
- Davis High School, Fargo, North Dakota 58104, United States
| | - Li Feng
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| |
Collapse
|