1
|
Pisarenko T, Papež N, Al-Anber MA, Dallaev R, Částková K, Ţălu Ş. A Development and Comparison Study of PVDF Membranes Enriched by Metal-Organic Frameworks. Polymers (Basel) 2025; 17:1140. [PMID: 40362924 PMCID: PMC12073247 DOI: 10.3390/polym17091140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
This study is concerned with the research and development of nanofibrous hybrid materials functioning as membranes composed of polyvinylidene fluoride (PVDF) polymer and enriched with metal-organic frameworks (MOFs) as dopants for the adsorption and detection of gases, dyes, and heavy metals in wastewater. Several types of nanofiber composites are fabricated by electrostatic spinning. The prepared samples and their chemical, optical, and material properties are analyzed. Subsequently, the preliminary investigation of dye removal is conducted. Accordingly, the design and investigation of these nanofibrous structures may contribute to addressing critical environmental and technological challenges.
Collapse
Affiliation(s)
- Tatiana Pisarenko
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 2848/8, 61600 Brno, the Czech Republic; (T.P.); (N.P.); (R.D.)
| | - Nikola Papež
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 2848/8, 61600 Brno, the Czech Republic; (T.P.); (N.P.); (R.D.)
| | - Mohammed A. Al-Anber
- Department of Chemistry, Faculty of Sciences, Applied Science Private University, P.O. Box 166, Amman 11931, Jordan;
| | - Rashid Dallaev
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 2848/8, 61600 Brno, the Czech Republic; (T.P.); (N.P.); (R.D.)
| | - Klára Částková
- Central European Institute of Technology, Purkyňova 656/123, 61200 Brno, the Czech Republic;
- Department of Ceramics and Polymers, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 61600 Brno, the Czech Republic
| | - Ştefan Ţălu
- Directorate of Research, Development and Innovation Management (DMCDI), Technical University of Cluj-Napoca, Constantin Daicoviciu Street, No. 15, 400020 Cluj-Napoca, Cluj County, Romania
| |
Collapse
|
2
|
Li M, Ma J, Wang J, Wei X, Lu W. Conjugated Microporous Polymer-Based Fluorescent Probe for Selective Detection of Nitro-explosives and Metal Nitrates. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4033-4043. [PMID: 39761166 DOI: 10.1021/acsami.4c19789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The sensitive and selective identification of nitroaromatic explosives and industrially ubiquitous nitrates, which are harmful to the environment, is crucial from the viewpoints of security and environmental remediation. New multifunctional fluorescent porous materials that can sense nitro-explosives and nitrates are under continuous development. To this end, this study synthesizes 3,10,15-/-3,10,16-tribromotrinaphtho[3.3.3]propellane (TBP) and 4,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,1,3-benzothiadiazole (BB) and employs them as dual building blocks to prepare a porous conjugated microporous polymer (denoted as CMP-TBP-BB) via Suzuki-Miyaura borylation polycondensation. The CMP-TBP-BB synthesis strategy takes advantage of the donor and acceptor characteristics of the propeller-like trinaphtho[3.3.3]propellane moiety in TBP and the benzothiadiazole group in BB, respectively. The unusual two-dimensional conformation of the CMP with propeller-array-structured monomers helps to position the π components in the crystalline layers and establishes aligned conduction pathways. CMP-TBP-BB exhibits outstanding fluorescence characteristics. Its distinctive two-dimensional skeleton is exploited to fabricate highly aligned donor-acceptor building blocks, which is typically considered a challenging task. The porous CMP acts as a fluorescent sensor for selectively and sensitively detecting electron-deficient nitro-explosives and metal nitrates. Specifically, CMP-TBP-BB is responsive to 2,4,6-trinitrophenol and Fe(NO3)3 at parts per million levels, and the results of combined experimental and theoretical investigations of its sensing properties highlight its potential as a CMP-based fluorescence probe. Additionally, the dual-function fluorescent CMP probe exhibits remarkable temperature-sensing behavior owing to the high linearity between the fluorescence intensity and temperature, making it an excellent fluorescent thermometer.
Collapse
Affiliation(s)
- Ming Li
- School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan 471023, People's Republic of China
| | - Junying Ma
- School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan 471023, People's Republic of China
| | - Junling Wang
- School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan 471023, People's Republic of China
| | - Xuefeng Wei
- School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan 471023, People's Republic of China
| | - Weiwei Lu
- School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan 471023, People's Republic of China
| |
Collapse
|
3
|
Zhan F, Lin GL, Zhang TS, Xu K, Yang YF, Li G, She Y. Pt-S Bond-Enabled Temperature-Dependent Phosphorescence in S-Heteroaryl Tetradentate Pt(S^C^N^O) Complexes. Inorg Chem 2024; 63:8822-8831. [PMID: 38696545 DOI: 10.1021/acs.inorgchem.4c00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
This study presents the rare examples of S-heteroaryl tetradentate Pt(S^C^N^O) luminescent complexes (PtSZ and PtSZtBu) containing a Pt-S bond. The presence of the Pt-S bond allows the novel Pt(S^C^N^O) complexes to exhibit temperature-dependent phosphorescent emission behavior. The PtSZtBu exhibits dual-emission phenomena and biexponential transient decay spectra above 250 K, indicating the presence of two minimal excited states in the potential energy surface (PES) of the T1 state. Through complementary experimental and computational studies, we have identified changes in orbital composition between Pt(dxy)-S(px) and Pt(dyz)-S(pz) in excited states with increasing temperature. This results in two energy minima, enabling the excited states to decay selectively and radiatively at different temperatures. Consequently, this leads to remarkable steady-state and transient emission spectra changes. Our work not only provides valuable insights for the development of novel Pt-S bond-based tetradentate Pt(II) complexes but also enhances our understanding of the distinctive properties governed by the Pt-S bond.
Collapse
Affiliation(s)
- Feng Zhan
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Guo-Liang Lin
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Teng-Shuo Zhang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Kewei Xu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Yun-Fang Yang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Guijie Li
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Yuanbin She
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| |
Collapse
|
4
|
Harrington B, Ye Z, Signor L, Pickel AD. Luminescence Thermometry Beyond the Biological Realm. ACS NANOSCIENCE AU 2024; 4:30-61. [PMID: 38406316 PMCID: PMC10885336 DOI: 10.1021/acsnanoscienceau.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 02/27/2024]
Abstract
As the field of luminescence thermometry has matured, practical applications of luminescence thermometry techniques have grown in both frequency and scope. Due to the biocompatibility of most luminescent thermometers, many of these applications fall within the realm of biology. However, luminescence thermometry is increasingly employed beyond the biological realm, with expanding applications in areas such as thermal characterization of microelectronics, catalysis, and plasmonics. Here, we review the motivations, methodologies, and advances linked to nonbiological applications of luminescence thermometry. We begin with a brief overview of luminescence thermometry probes and techniques, focusing on those most commonly used for nonbiological applications. We then address measurement capabilities that are particularly relevant for these applications and provide a detailed survey of results across various application categories. Throughout the review, we highlight measurement challenges and requirements that are distinct from those of biological applications. Finally, we discuss emerging areas and future directions that present opportunities for continued research.
Collapse
Affiliation(s)
- Benjamin Harrington
- Materials
Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Ziyang Ye
- Materials
Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Laura Signor
- The
Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Andrea D. Pickel
- Department
of Mechanical Engineering and Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
5
|
Fahad S, Li S, Zhai Y, Zhao C, Pikramenou Z, Wang M. Luminescence-Based Infrared Thermal Sensors: Comprehensive Insights. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304237. [PMID: 37679096 DOI: 10.1002/smll.202304237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/08/2023] [Indexed: 09/09/2023]
Abstract
Recent chronological breakthroughs in materials innovation, their fabrication, and structural designs for disparate applications have paved transformational ways to subversively digitalize infrared (IR) thermal imaging sensors from traditional to smart. The noninvasive IR thermal imaging sensors are at the cutting edge of developments, exploiting the abilities of nanomaterials to acquire arbitrary, targeted, and tunable responses suitable for integration with host materials and devices, intimately disintegrate variegated signals from the target onto depiction without any discomfort, eliminating motional artifacts and collects precise physiological and physiochemical information in natural contexts. Highlighting several typical examples from recent literature, this review article summarizes an accessible, critical, and authoritative summary of an emerging class of advancement in the modalities of nano and micro-scale materials and devices, their fabrication designs and applications in infrared thermal sensors. Introduction is begun covering the importance of IR sensors, followed by a survey on sensing capabilities of various nano and micro structural materials, their design architects, and then culminating an overview of their diverse application swaths. The review concludes with a stimulating frontier debate on the opportunities, difficulties, and future approaches in the vibrant sector of infrared thermal imaging sensors.
Collapse
Affiliation(s)
- Shah Fahad
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Song Li
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yufei Zhai
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Cong Zhao
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zoe Pikramenou
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Min Wang
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
6
|
Xu X, Yan B. Bionic Luminescent Skin as Ultrasensitive Temperature-Acoustic Sensor for Underwater Information Perception and Transmission. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309328. [PMID: 37870557 DOI: 10.1002/adma.202309328] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Bioinspired artificial luminescent skin (L-skin) integrated with multiple sensing functions significantly promotes the development of smart devices. It is considerably challenging to realize underwater sensing technologies. Here, a sharkskin-inspired Eu@HOF-TJ-1@TA L-skin (1) is prepared for both temperature and sound sensing. 1 is an ultrathin and flexible temperature sensor, in 298.15-358.15 K, exhibiting ultrahigh maximum relative sensitivity (97.669% K-1 ) and low minimum uncertainty (0.000 952 K). The temperature response mechanism is analyzed deeply. As a waterproofing acoustic sensor, 1 can monitor sound in both air and water with the greatest sound response frequencies of 400 and 300 Hz in air and water, respectively. The maximum sensitivities of 1 in air and water are 6 593 765.2 and 1 346 124.5 cps Pa-1 , respectively. The response times of 1 in air and water are as fast as 20 and 10 ms. The sound response processes of 1 in air and water are simulated by finite element simulation. Moreover, by using sharkskin-inspired 1, the actual water temperature can be monitored, and a series of water sound information can be recognized by using an artificial neural network. This work proposes a sharkskin-inspired L-skin for temperature and acoustic sensing and promotes the development of underwater sensing technology with high performances.
Collapse
Affiliation(s)
- Xin Xu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China
| |
Collapse
|
7
|
Sánchez F, Gutiérrez M, Douhal A. Taking Advantage of a Luminescent ESIPT-Based Zr-MOF for Fluorochromic Detection of Multiple External Stimuli: Acid and Base Vapors, Mechanical Compression, and Temperature. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56587-56599. [PMID: 37983009 DOI: 10.1021/acsami.3c14348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Luminescent materials responsive to external stimuli have captivated great attention owing to their potential implementation in noninvasive photonic sensors. Luminescent metal-organic frameworks (LMOFs), a type of porous crystalline material, have emerged as one of the most promising candidates for these applications. Moreover, LMOFs constructed with organic linkers that undergo excited-state intramolecular proton-transfer (ESIPT) reactions are particularly relevant since changes in the surrounding environment induce modifications in their emission properties. Herein, an ESIPT-based LMOF, UiO-66-(OH)2, has been synthesized, spectroscopically and photodynamically characterized, and tested for detecting multiple external stimuli. First, the spectroscopic and photodynamic characterization of the organic linker (2,5-dihydroxyterephthalic acid (DHT)) and the UiO-66-(OH)2 MOF demonstrates that the emission properties are mainly governed by the enol → keto tautomerization, occurring in the organic linker via the ESIPT reaction. Afterward, the UiO-66-(OH)2 MOF proves for the first time to be a promising candidate to detect vapors of acid (HCl) and base (Et3N) toxic chemicals, changes in the mechanical compression (exercised pressure), and changes in the temperature. These results shed light on the potential of ESIPT-based LMOFs to be implemented in the development of advanced optical materials and luminescent sensors.
Collapse
Affiliation(s)
- Francisco Sánchez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| | - Mario Gutiérrez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| |
Collapse
|
8
|
Sundaresan S, Becker JG, Eppelsheimer J, Sedykh AE, Carrella LM, Müller-Buschbaum K, Rentschler E. Synergetic spin singlet-quintet switching and luminescence in mononuclear Fe(II) 1,3,4-oxadiazole tetradentate chelates with NCBH 3 co-ligand. Dalton Trans 2023; 52:13181-13189. [PMID: 37664901 DOI: 10.1039/d3dt02420b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
We report the multi-step synthesis of the tetradentate 2-(naphthalen-2-yl)-5-[N,N-bis(2-pyridylmethyl)aminomethyl]-1,3,4-oxadiazole ligand (LTetra-ODA) along with its corresponding [FeII(LTetra-ODA)(NCBH3)2]·1.5CH3OH (C1) complex, which is the first mononuclear 1,3,4-oxadiazole based Fe(II) spin crossover (SCO) complex, and its zinc analogue [ZnII(LTetra-ODA)(NCBH3)2]·0.5H2O (C2). The spin transition is followed by variable temperature (VT-) X-ray crystallography of [Fe(LTetra-ODA)(NCBH3)2]·1.5CH3OH (C1) at 120 and 220 K. The magnetic susceptibility measurements on the bulk sample recorded from 2 to 300 K show that the complex exhibits a complete abrupt reversible spin transition with a T1/2 of 207 K. The loss of the lattice solvent methanol shifts the T1/2 slightly to around 210 K. The spin transition in solution for [Fe(LTetra-ODA)(NCBH3)2]·1.5CH3OH (C1) was followed using the VT-1H-NMR Evans method in CD3CN, with a T1/2 of 357 K. Solid state VT luminescence studies provide some preliminary evidence of interplay of luminescence and spin transition in the [Fe(LTetra-ODA)(NCBH3)2]·1.5CH3OH (C1) complex.
Collapse
Affiliation(s)
- Sriram Sundaresan
- Department Chemie, Johannes-Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Jens-Georg Becker
- Department Chemie, Johannes-Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Julian Eppelsheimer
- Department Chemie, Johannes-Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Alexander E Sedykh
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Luca M Carrella
- Department Chemie, Johannes-Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Klaus Müller-Buschbaum
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Eva Rentschler
- Department Chemie, Johannes-Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|
9
|
Stefańska D, Kabański A, Vu THQ, Adaszyński M, Ptak M. Structure, Luminescence and Temperature Detection Capability of [C(NH 2) 3]M(HCOO) 3 (M = Mg 2+, Mn 2+, Zn 2+) Hybrid Organic-Inorganic Formate Perovskites Containing Cr 3+ Ions. SENSORS (BASEL, SWITZERLAND) 2023; 23:6259. [PMID: 37514554 PMCID: PMC10386541 DOI: 10.3390/s23146259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Metal-organic frameworks are of great interest to scientists from various fields. This group also includes organic-inorganic hybrids with a perovskite structure. Recently their structural, phonon, and luminescent properties have been paid much attention. However, a new way of characterization of these materials has become luminescence thermometry. Herein, we report the structure, luminescence, and temperature detection ability of formate organic-inorganic perovskite [C(NH2)3]M(HCOO)3 (Mg2+, Mn2+, Zn2+) doped with Cr3+ ions. Crystal field strength (Dq/B) and Racah parameters were determined based on diffuse reflectance spectra. It was shown that Cr3+ ions are positioned in the intermediate crystal field or close to it with a Dq/B range of 2.29-2.41. The co-existence of the spin-forbidden and spin-allowed transitions of Cr3+ ions enable the proposal of an approach for remote readout of the temperature. The relative sensitivity (Sr) can be easily modified by sample composition and Cr3+ ions concentration. The luminescent thermometer based on the 2E/4T2g transitions has the relative sensitivity Sr of 2.08%K-1 at 90 K for [C(NH2)3]Mg(HCOO)3: 1% Cr3+ and decrease to 1.20%K-1 at 100 K and 1.08%K-1 at 90 K for Mn2+ and Zn2+ analogs, respectively.
Collapse
Affiliation(s)
- Dagmara Stefańska
- Włodzimierz Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Adam Kabański
- Włodzimierz Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Thi Hong Quan Vu
- Włodzimierz Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Marek Adaszyński
- Włodzimierz Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Maciej Ptak
- Włodzimierz Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| |
Collapse
|