1
|
Yamamoto E, Gao T, Xiao L, Kopera K, Marth S, Park H, Bae C, Osada M, Mallouk TE. Molecularly Thin Nanosheet Films as Water Dissociation Reaction Catalysts Enhanced by Strong Electric Fields in Bipolar Membranes. J Am Chem Soc 2025; 147:14270-14279. [PMID: 40233191 DOI: 10.1021/jacs.4c17830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Bipolar membranes (BPMs) are interesting materials for the development of next-generation electrochemical energy conversion and separations processes. One of the key challenges in optimizing BPM performance is enhancing the rate of the water dissociation (WD) reaction. While electric field effects, specifically the second Wien effect, have been demonstrated to enhance the rate of WD reaction, making BPMs with low overpotentials for WD using primary electric field effects has been difficult to achieve. In this study, we constructed an abrupt interfacial structure between the anion exchange membrane (AEM) and cation exchange membrane (CEM) of BPMs to maximize the intensity of local electric field. A film of densely tiled, molecularly thin titanium oxide nanosheets was deposited as the interfacial layer to create an abrupt interface for studying extreme electric field effects. Although BPMs with titanium oxide nanosheet films exhibited higher WD reaction resistance compared to thicker catalyst layers composed of nanoparticles at low current density, they showed superior performance at higher current densities, where strong electric fields were present, and an apparent WD overpotential of 0.25 V at 300 mA cm-2 was extracted from electrochemical impedance measurements. These results highlight the potential of optimizing BPM performance by maximizing the second Wien effect through the utilization of two-dimensionally assembled nanosheet films.
Collapse
Affiliation(s)
- Eisuke Yamamoto
- Institute of Materials and Systems for Sustainability (IMaSS), Nagoya University, Nagoya 464-8601, Japan
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, Pennsylvania 19104, United States
| | - Tianyue Gao
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, Pennsylvania 19104, United States
| | - Langqiu Xiao
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, Pennsylvania 19104, United States
| | - Kelly Kopera
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, Pennsylvania 19104, United States
| | - Sariah Marth
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Heemin Park
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Chulsung Bae
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Minoru Osada
- Institute of Materials and Systems for Sustainability (IMaSS), Nagoya University, Nagoya 464-8601, Japan
- Research Institute for Quantum and Chemical Innovation, Institutes of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, Pennsylvania 19104, United States
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
2
|
Salazar-Gastélum LJ, Arredondo-Espínola A, Pérez-Sicairos S, Álvarez-Contreras L, Arjona N, Guerra-Balcázar M. Quaternized Polysulfone as a Solid Polymer Electrolyte Membrane with High Ionic Conductivity for All-Solid-State Zn-Air Batteries. MEMBRANES 2025; 15:102. [PMID: 40277972 PMCID: PMC12029050 DOI: 10.3390/membranes15040102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/08/2025] [Accepted: 03/30/2025] [Indexed: 04/26/2025]
Abstract
Solid polymer electrolytes (SPEs) are gaining attention as viable alternatives to traditional aqueous electrolytes in zinc-air batteries (ZABs), owing to their enhanced performance and stability. In this study, anion-exchange solid polymer electrolytes (A-SPEs) were synthesized via electrophilic aromatic substitution and substitution reactions. Thin films were prepared using the solvent casting method and characterized using proton nuclear magnetic resonance (¹H-NMR), Fourier-transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). The ion-exchange capacity (IEC), KOH uptake, ionic conductivity, and battery performance were also obtained by varying the degree of functionalization of the A-SPEs (30 and 120%, denoted as PSf30/PSf120, respectively). The IEC analysis revealed that PSf120 exhibited a higher quantity of functional groups, enhancing its hydroxide conductivity, which reached a value of 22.19 mS cm-1. In addition, PSf120 demonstrated a higher power density (70 vs. 50 mW cm-2) and rechargeability than benchmarked Fumapem FAA-3-50 A-SPE. Postmortem analysis further confirmed the lower formation of ZnO for PSf120, indicating the improved stability and reduced passivation of the zinc electrode. Therefore, this type of A-SPE could improve the performance and rechargeability of all-solid-state ZABs.
Collapse
Affiliation(s)
- Luis Javier Salazar-Gastélum
- Facultad de Ingeniería, División de Investigación y Posgrado, Universidad Autónoma de Querétaro, Querétaro 76010, Santiago de Querétaro, Mexico;
| | - Alejandro Arredondo-Espínola
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C., Sanfandila 76703, Pedro Escobedo, Mexico;
| | - Sergio Pérez-Sicairos
- Centro de Graduados e Investigación en Química, Instituto Tecnológico de Tijuana, Tecnológico Nacional de México, Blvd. Alberto Limón Padilla, S/N Col. Otay Tecnológico, Tijuana 22510, Baja California, Mexico;
| | - Lorena Álvarez-Contreras
- Centro de Investigación en Materiales Avanzados S. C., Complejo Industrial Chihuahua, Chihuahua 31136, Chihuahua, Mexico;
| | - Noé Arjona
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C., Sanfandila 76703, Pedro Escobedo, Mexico;
| | - Minerva Guerra-Balcázar
- Facultad de Ingeniería, División de Investigación y Posgrado, Universidad Autónoma de Querétaro, Querétaro 76010, Santiago de Querétaro, Mexico;
| |
Collapse
|
3
|
Adisasmito S, Khoiruddin K, Sutrisna PD, Wenten IG, Siagian UWR. Bipolar Membrane Seawater Splitting for Hydrogen Production: A Review. ACS OMEGA 2024; 9:14704-14727. [PMID: 38585051 PMCID: PMC10993265 DOI: 10.1021/acsomega.3c09205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024]
Abstract
The growing demand for clean energy has spurred the quest for sustainable alternatives to fossil fuels. Hydrogen has emerged as a promising candidate with its exceptional heating value and zero emissions upon combustion. However, conventional hydrogen production methods contribute to CO2 emissions, necessitating environmentally friendly alternatives. With its vast potential, seawater has garnered attention as a valuable resource for hydrogen production, especially in arid coastal regions with surplus renewable energy. Direct seawater electrolysis presents a viable option, although it faces challenges such as corrosion, competing reactions, and the presence of various impurities. To enhance the seawater electrolysis efficiency and overcome these challenges, researchers have turned to bipolar membranes (BPMs). These membranes create two distinct pH environments and selectively facilitate water dissociation by allowing the passage of protons and hydroxide ions, while acting as a barrier to cations and anions. Moreover, the presence of catalysts at the BPM junction or interface can further accelerate water dissociation. Alongside the thermodynamic potential, the efficiency of the system is significantly influenced by the water dissociation potential of BPMs. By exploiting these unique properties, BPMs offer a promising solution to improve the overall efficiency of seawater electrolysis processes. This paper reviews BPM electrolysis, including the water dissociation mechanism, recent advancements in BPM synthesis, and the challenges encountered in seawater electrolysis. Furthermore, it explores promising strategies to optimize the water dissociation reaction in BPMs, paving the way for sustainable hydrogen production from seawater.
Collapse
Affiliation(s)
- Sanggono Adisasmito
- Department
of Chemical Engineering, Institut Teknologi
Bandung (ITB), Jalan
Ganesa No. 10, Bandung 40132, Indonesia
| | - Khoiruddin Khoiruddin
- Department
of Chemical Engineering, Institut Teknologi
Bandung (ITB), Jalan
Ganesa No. 10, Bandung 40132, Indonesia
| | - Putu D. Sutrisna
- Department
of Chemical Engineering, Universitas Surabaya
(UBAYA), Jalan Raya Kalirungkut (Tenggilis), Surabaya 60293, Indonesia
| | - I Gede Wenten
- Department
of Chemical Engineering, Institut Teknologi
Bandung (ITB), Jalan
Ganesa No. 10, Bandung 40132, Indonesia
| | - Utjok W. R. Siagian
- Department
of Petroleum Engineering, Institut Teknologi
Bandung (ITB), Jalan Ganesa No. 10, Bandung 40132, Indonesia
| |
Collapse
|
4
|
Al-Dhubhani E, Tedesco M, de Vos WM, Saakes M. Combined Electrospinning-Electrospraying for High-Performance Bipolar Membranes with Incorporated MCM-41 as Water Dissociation Catalysts. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45745-45755. [PMID: 37729586 PMCID: PMC10561145 DOI: 10.1021/acsami.3c06826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
Electrospinning has been demonstrated as a very promising method to create bipolar membranes (BPMs), especially as it allows three-dimensional (3D) junctions of entangled anion exchange and cation exchange nanofibers. These newly developed BPMs are relevant to demanding applications, including acid and base production, fuel cells, flow batteries, ammonia removal, concentration of carbon dioxide, and hydrogen generation. However, these applications require the introduction of catalysts into the BPM to allow accelerated water dissociation, and this remains a challenge. Here, we demonstrate a versatile strategy to produce very efficient BPMs through a combined electrospinning-electrospraying approach. Moreover, this work applies the newly investigated water dissociation catalyst of nanostructured silica MCM-41. Several BPMs were produced by electrospraying MCM-41 nanoparticles into the layers directly adjacent to the main BPM 3D junction. BPMs with various loadings of MCM-41 nanoparticles and BPMs with different catalyst positions relative to the junction were investigated. The membranes were carefully characterized for their structure and performance. Interestingly, the water dissociation performance of BPMs showed a clear optimal MCM-41 loading where the performance outpaced that of a commercial BPM, recording a transmembrane voltage of approximately 1.11 V at 1000 A/m2. Such an excellent performance is very relevant to fuel cell and flow battery applications, but our results also shed light on the exact function of the catalyst in this mode of operation. Overall, we demonstrate clearly that introducing a novel BPM architecture through a novel hybrid electrospinning-electrospraying method allows the uptake of promising new catalysts (i.e., MCM-41) and the production of very relevant BPMs.
Collapse
Affiliation(s)
- Emad Al-Dhubhani
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
- Membrane
Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Michele Tedesco
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Wiebe M. de Vos
- Membrane
Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Michel Saakes
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| |
Collapse
|