1
|
Jiang S, Shu Y, Guo S, Ni Y, Zhao R, Shan H, Ma W. Proteomics-Based Exploration of the Hepatoprotective Mechanism of α-Lipoic Acid in Rats with Iron Overload-Induced Liver Injury. Int J Mol Sci 2025; 26:4774. [PMID: 40429916 PMCID: PMC12112492 DOI: 10.3390/ijms26104774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 05/09/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Excessive iron accumulation poses a significant threat to liver health, primarily through oxidative stress and autophagy dysregulation. α-Lipoic acid (ALA), a natural antioxidant with hepatoprotective properties, may alleviate iron-induced liver damage, but its underlying mechanisms are not fully understood. This study utilized male Sprague Dawley rats and BRL-3A cells to explore the protective effects of ALA against iron overload in vivo and in vitro, respectively. ALA treatment significantly reduced hepatic iron accumulation, improved liver morphology, and alleviated iron-induced ultrastructural damage in rats. ALA also improved liver function markers in plasma, including alkaline phosphatase (ALP), gamma-glutamyltransferase (GGT), total bilirubin (TBIL), and the AST/ALT ratio. Furthermore, ALA mitigated iron-induced oxidative stress by lowering hepatic reactive oxygen species (ROS) and malondialdehyde (MDA), while increasing the antioxidant enzyme activities of glutathione peroxidase (GSH-Px) and catalase (CAT). In BRL-3A cells, ALA improved cell viability, decreased intracellular ROS, and reduced iron levels. Proteomics analysis indicates that NAD(P)H: quinone oxidoreductase 1 (NQO1) may play a critical role in the protective effects of ALA against iron overload-induced hepatic damage in rats. Mechanistically, ALA upregulated NQO1 expression while downregulating autophagy-related proteins, including light chain 3B (LC3B), lysosomal-associated membrane protein 1 (LAMP1), and cathepsin D (CTSD). Inhibition or knockdown of NQO1 abolished ALA's protective effects, confirming its role in reducing oxidative stress and excessive autophagy. These findings highlight the potential of ALA as a therapeutic agent for managing hepatic iron toxicity through iron chelation and activation of NQO1.
Collapse
Affiliation(s)
- Shuxia Jiang
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China;
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (S.G.); (Y.N.); (R.Z.)
| | - Yujia Shu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (S.G.); (Y.N.); (R.Z.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Shihui Guo
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (S.G.); (Y.N.); (R.Z.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (S.G.); (Y.N.); (R.Z.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (S.G.); (Y.N.); (R.Z.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongli Shan
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China;
| | - Wenqiang Ma
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (S.G.); (Y.N.); (R.Z.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Wang X, Yan J, Zhao Y, Li S, Ma Z, Duan X, Wang Y, Jiao J, Gu C, Zhang G. Targeted Degradation of EGFR Mutations via Self-Delivery Nano-PROTACs for Boosting Tumor Synergistic Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20943-20956. [PMID: 40145370 DOI: 10.1021/acsami.5c01103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Proteolysis targeting chimera (PROTAC) has recently emerged as a promising strategy to selectively degrade target proteins in the treatment of various diseases. However, it has low bioavailability due to strong hydrophobicity, poor membrane permeability, and nonspecific distribution in vivo, which greatly limits its application. In this study, self-delivery PROTAC nanoparticles (designated as CP NPs) integrating gefitinib-based PROTACs and photosensitizers were developed to efficiently degrade mutated epidermal growth factor receptor (EGFR), a crucial kinase for cell growth and survival, while simultaneously triggering photodynamic therapy and immunotherapy. The prepared NPs enhanced the tumor accumulation of PROTACs, which led to the selective degradation of EGFR mutations and a reduction in programmed cell death protein ligand 1 levels, thereby alleviating tumor immunosuppression and immune tolerance. Moreover, under laser irradiation, the coloaded photosensitizers triggered potent photodynamic therapy effects and induced immunogenic cell death, which worked synergistically with PROTACs toward eliciting a robust antitumor immune response. In a mouse model of lung cancer, primary, distant, and lung metastatic tumors were significantly suppressed. This work highlights the potential of nano-PROTACs for degrading target proteins and facilitating combination photodynamic immunotherapy toward expanding PROTAC applications in cancer therapy.
Collapse
Affiliation(s)
- Xuechun Wang
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jie Yan
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yilei Zhao
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Songyan Li
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Zilin Ma
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xiuying Duan
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yuelan Wang
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Changping Gu
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Guiqiang Zhang
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
3
|
Wu M, Zhao Y, Zhang C, Pu K. Advancing Proteolysis Targeting Chimera (PROTAC) Nanotechnology in Protein Homeostasis Reprograming for Disease Treatment. ACS NANO 2024; 18:28502-28530. [PMID: 39377250 DOI: 10.1021/acsnano.4c09800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) represent a transformative class of therapeutic agents that leverage the intrinsic protein degradation machinery to modulate the hemostasis of key disease-associated proteins selectively. Although several PROTACs have been approved for clinical application, suboptimal therapeutic efficacy and potential adverse side effects remain challenging. Benefiting from the enhanced targeted delivery, reduced systemic toxicity, and improved bioavailability, nanomedicines can be tailored with precision to integrate with PROTACs which hold significant potential to facilitate PROTAC nanomedicines (nano-PROTACs) for clinical translation with enhanced efficacy and reduced side effects. In this review, we provide an overview of the recent progress in the convergence of nanotechnology with PROTAC design, leveraging the inherent properties of nanomaterials, such as lipids, polymers, inorganic nanoparticles, nanohydrogels, proteins, and nucleic acids, for precise PROTAC delivery. Additionally, we discuss the various categories of PROTAC targets and provide insights into their clinical translational potential, alongside the challenges that need to be addressed.
Collapse
Affiliation(s)
- Mengyao Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yilan Zhao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chi Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| |
Collapse
|
4
|
Zhan J, Li X, Mu Y, Yao H, Zhu JJ, Zhang J. A photoactivatable upconverting nanodevice boosts the lysosomal escape of PROTAC degraders for enhanced combination therapy. Biomater Sci 2024; 12:3686-3699. [PMID: 38873991 DOI: 10.1039/d4bm00548a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
PROteolysis TArgeting Chimeras have received increasing attention due to their capability to induce potent degradation of various disease-related proteins. However, the effective and controlled cytosolic delivery of current small-molecule PROTACs remains a challenge, primarily due to their intrinsic shortcomings, including unfavorable solubility, poor cell permeability, and limited spatiotemporal precision. Here, we develop a near-infrared light-controlled PROTAC delivery device (abbreviated as USDPR) that allows the efficient photoactivation of PROTAC function to achieve enhanced protein degradation. The nanodevice is constructed by encapsulating the commercial BRD4-targeting PROTACs (dBET6) in the hollow cavity of mesoporous silica-coated upconversion nanoparticles, followed by coating a Rose Bengal (RB) photosensitizer conjugated poly-L-lysine (PLL-RB). This composition enables NIR light-activatable generation of cytotoxic reactive oxygen species due to the energy transfer from the UCNPs to PLL-RB, which boosts the endo/lysosomal escape and subsequent cytosolic release of dBET6. We demonstrate that USDPR is capable of effectively degrading BRD4 in a NIR light-controlled manner. This in combination with NIR light-triggered photodynamic therapy enables an enhanced antitumor effect both in vitro and in vivo. This work thus presents a versatile strategy for controlled release of PROTACs and codelivery with photosensitizers using an NIR-responsive nanodevice, providing important insight into the design of effective PROTAC-based combination therapy.
Collapse
Affiliation(s)
- Jiayin Zhan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xiang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yueru Mu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Huiqin Yao
- Department of Medical Chemistry, College of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jingjing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Zhong J, Zhao R, Wang Y, Su YX, Lan X. Nano-PROTACs: state of the art and perspectives. NANOSCALE 2024; 16:4378-4391. [PMID: 38305466 DOI: 10.1039/d3nr06059d] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
PROteolysis TArgeting Chimeras (PROTACs), as a recently identified technique in the field of new drug development, provide new concepts for disease treatment and are expected to revolutionize drug discovery. With high specificity and flexibility, PROTACs serve as an innovative research tool to target and degrade disease-relevant proteins that are not currently pharmaceutically vulnerable to eliminating their functions by hijacking the ubiquitin-proteasome system. To date, PROTACs still face the challenges of low solubility, poor permeability, off-target effects, and metabolic instability. The combination of nanotechnology and PROTACs has been explored to enhance the in vivo performance of PROTACs regarding overcoming these challenging hurdles. In this review, we summarize the latest advancements in the building-block design of PROTAC prodrug nanoparticles and provide an overview of existing/potential delivery systems and loading approaches for PROTAC drugs. Furthermore, we discuss the current status and prospects of the split-and-mix approach for PROTAC drug optimization. Additionally, the advantages and translational potentials of carrier-free nano-PROTACs and their combinational therapeutic effects are highlighted. This review aims to foster a deeper understanding of this rapidly evolving field and facilitate the progress of nano-PROTACs that will continue to push the boundaries of achieving selectivity and controlled release of PROTAC drugs.
Collapse
Affiliation(s)
- Jie Zhong
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
- Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, China.
| | - Ruiqi Zhao
- Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, China.
| | - Yuji Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| | - Yu-Xiong Su
- Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, China.
| | - Xinmiao Lan
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
6
|
Juengpanich S, Li S, Yang T, Xie T, Chen J, Shan Y, Lee J, Lu Z, Chen T, Zhang B, Cao J, Hu J, Yu J, Wang Y, Topatana W, Gu Z, Cai X, Chen M. Pre-activated nanoparticles with persistent luminescence for deep tumor photodynamic therapy in gallbladder cancer. Nat Commun 2023; 14:5699. [PMID: 37709778 PMCID: PMC10502062 DOI: 10.1038/s41467-023-41389-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
Phototherapy of deep tumors still suffers from many obstacles, such as limited near-infrared (NIR) tissue penetration depth and low accumulation efficiency within the target sites. Herein, stimuli-sensitive tumor-targeted photodynamic nanoparticles (STPNs) with persistent luminescence for the treatment of deep tumors are reported. Purpurin 18 (Pu18), a porphyrin derivative, is utilized as a photosensitizer to produce persistent luminescence in STPNs, while lanthanide-doped upconversion nanoparticles (UCNPs) exhibit bioimaging properties and possess high photostability that can enhance photosensitizer efficacy. STPNs are initially stimulated by NIR irradiation before intravenous administration and accumulate at the tumor site to enter the cells through the HER2 receptor. Due to Pu18 afterglow luminescence properties, STPNs can continuously generate ROS to inhibit NFκB nuclear translocation, leading to tumor cell apoptosis. Moreover, STPNs can be used for diagnostic purposes through MRI and intraoperative NIR navigation. STPNs exceptional antitumor properties combined the advantages of UCNPs and persistent luminescence, representing a promising phototherapeutic strategy for deep tumors.
Collapse
Affiliation(s)
- Sarun Juengpanich
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
- School of Medicine, Zhejiang University, 310058, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Shijie Li
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
- School of Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Taorui Yang
- Department of Chemistry, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Tianao Xie
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
- School of Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Jiadong Chen
- Department of Chemistry, Zhejiang University, 310016, Hangzhou, China
| | - Yukai Shan
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Jiyoung Lee
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Ziyi Lu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Tianen Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Bin Zhang
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Jiasheng Cao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Jiahao Hu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Jicheng Yu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 310058, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 311121, Hangzhou, China
- Jinhua Institute of Zhejiang University, 321299, Jinhua, China
| | - Yanfang Wang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Win Topatana
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China.
- School of Medicine, Zhejiang University, 310058, Hangzhou, China.
| | - Zhen Gu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China.
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 310058, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 311121, Hangzhou, China.
- Jinhua Institute of Zhejiang University, 321299, Jinhua, China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China.
- School of Medicine, Zhejiang University, 310058, Hangzhou, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China.
| | - Mingyu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China.
- School of Medicine, Zhejiang University, 310058, Hangzhou, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China.
| |
Collapse
|