1
|
Dai K, Cao S, Yuan J, Wang Z, Li H, Yuan C, Yan X, Xing R. Recent Advances of Sustainable UV Shielding Materials: Mechanisms and Applications. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40372797 DOI: 10.1021/acsami.5c04539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
The escalating global threat of ultraviolet (UV) radiation is manifested through multifaceted damage pathways including cutaneous carcinogenesis, photodegradation of organic substrates, marine ecosystem destabilization, and infrastructure weathering. These urgent challenges have catalyzed sustained interdisciplinary efforts toward advanced UV-shielding technologies spanning biomedical, environmental, and industrial domains. Current material arsenals include melanin, lignin, tannin, polydopamine, zinc oxide and titanium dioxide, etc. These materials can be applied to diverse fields such as food packaging, sunscreen fabrics, sunscreen creams, eyeglasses, and sunscreen films through tailored processing techniques and employing distinct photoprotective mechanisms. Notwithstanding significant progress, the development of an integrated selection framework that reconciles efficiency, durability, and environmental compatibility persists as a critical knowledge gap. In this context, the main mechanisms of various types of UV shielding materials and their applications in different fields are described systematically. Subsequently, a comparative analysis of the advantages and shortcomings of different materials is presented, focusing on their UV shielding efficiency and stability impact. Moreover, the review delves into their unique value in specific scenarios. Finally, building on these analyses, current challenges and future development prospects of UV shielding materials are further discussed, with emphasis on scalability, eco-friendly alternatives, and multifunctional integration, providing valuable insights and guidance for advancing research and promoting sustainable and functional innovations in this field.
Collapse
Affiliation(s)
- Ke Dai
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Shuai Cao
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiewei Yuan
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Zhiwei Wang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Hong Li
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Chengqian Yuan
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuehai Yan
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Ruirui Xing
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Zhao H, Liu J, Chang S, Meng Z, Wang X, Gao H. Triple Biomimetic Surfaces with Patterned Anisotropic Wettability for Multiscale Droplets Manipulation. NANO LETTERS 2025; 25:5638-5645. [PMID: 40047311 DOI: 10.1021/acs.nanolett.4c06310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Droplets manipulation has attracted increasing attention for its increasingly widespread applications. However, current droplet manipulation usually needs complex preparation methods. Here, inspired by lotus leaves, rive leaves, and desert beetles, triple biomimetic surfaces are prepared through laser and heating. The mastoid structures contribute to the construction of superwettability. Within effective cycles, patterned scanning laser processing helps to achieve various interlaced wettability. The groove structure compensates for the decrease in droplet manipulation ability caused by the attenuation of superwettability. Meanwhile, the groove structure endows the scanning regions with good durability. The groove structure and interlaced wettability together constitute the anisotropic suface patterns. Macroscopic and microscopic droplet manipulation has been successfully achieved, demonstrating widespread applications. This work not only provides a titanium surface with triple biomimetic properties but also provides new insights for various droplet manipulations on metal surfaces.
Collapse
Affiliation(s)
- Haoyang Zhao
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Jiaxi Liu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, P. R. China
| | - Siyu Chang
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Zong Meng
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Xi Wang
- School of Mechanical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Hanpeng Gao
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| |
Collapse
|
3
|
Chai Z, Teng Z, Guo P, He Y, Zhao D, Zuo X, Liu K, Jiang L, Heng L. A Photoelectric Synergistic Flexible Solid Slippery Surface for All-Day Anti-Icing/Frosting. SMALL METHODS 2025; 9:e2400859. [PMID: 39535523 DOI: 10.1002/smtd.202400859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/26/2024] [Indexed: 11/16/2024]
Abstract
The accumulation of ice on surface has caused great harm to lots of fields such as transportation or aerospace. Nowadays, various equipment or tools used in low-temperature environments, which face the risk of interface icing, usually have irregular shapes. Traditional rigid anti-icing materials are difficult to meet practical application requirements. Thus, it is crucial to develop flexible anti-icing materials that can be applied to various shape surfaces (curved surfaces, flat surfaces). In this paper, a photoelectric synergistic flexible solid slippery surface (FSSS) is prepared by using flexible basalt fiberglass cloth, flexible copper foil, flexible polyurethane/carbon nanotubes mixture, and flexible solid lubricant (the mixture of coconut wax and coconut oil). Even under harsh conditions of the temperature as low as -80 °C, the FSSS exhibits excellent all-day anti/de-icing performance whether on flat or curved surface. Moreover, the FSSS shows long-term stability both on flat and curved surface: situated in air for 60 days, submerged in water for 60 days, kept in acid environment (pH 1) and base environment (pH 13) for 30 days. Besides, the FSSS can also achieve self-healing function under -80 °C. This flexible surface provides a novel approach for de-icing/frosting of multi-shaped objects in the future.
Collapse
Affiliation(s)
- Ziyuan Chai
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Ziyi Teng
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Pu Guo
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Yueran He
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Di Zhao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Xiaobiao Zuo
- National Engineering Research Center of Functional Carbon Composite, Aerospace Research Institute of Materials and Processing Technology, Beijing, 100076, China
| | - Kesong Liu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Liping Heng
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| |
Collapse
|
4
|
Li HL, Wang F, Zhang RG, Guo ML, Wang YZ, Song F. Ex Situ pH-Induced Reversible Wettability Switching for an Environmentally Robust and High-Efficiency Stain-Proof Coating. SMALL METHODS 2024:e2401621. [PMID: 39722168 DOI: 10.1002/smtd.202401621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Developing superwetting coatings with environmental adaptability is critical for sustainable industrial applications. However, traditional anti-wetting coatings often fall short due to their susceptibility to environmental factors (UV light, temperature, mold growth, and abrasion) and inadequate stain resistance in complex media. Herein, a durable ex situ pH-responsive coating with reversible wettability switching, engineered by integrating hydrophobic polydimethylsiloxane and tertiary amine structures is presented. The resulting hierarchical micro-nano surface structure, combined with a trapped air cushion, ensures low water adhesion and stable superhydrophobicity. Notably, after ex situ pH treatment, the modulation of surface N+ content synergistically interacts with polydimethylsiloxane chains, enabling a controlled transition in surface wettability from 150° to 68.5°, which can spontaneously revert to a hydrophobic state upon heating and drying. This transition enhances stain resistance in both air and underwater environments, resulting in a 17.2% increase in detergency compared to superhydrophobic controls. Moreover, the coating demonstrates remarkable durability, with no staining, peeling, or mildew growth (grade 0) even after 1500 h of UV radiation and 28 days of mildew resistance testing. This work offers a highly adaptable and stain-resistant coating for applications in building and infrastructure protection, as well as in smart textiles designed for multi-media decontamination.
Collapse
Affiliation(s)
- Hang-Lin Li
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Fang Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610064, China
| | - Rong-Gang Zhang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Mei-Lin Guo
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Fei Song
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
5
|
Liu X, Li S, Wu Y, Guo T, Xie J, Tao J, Wu H, Ran Q. Durable Photothermal Superhydrophobic Coating Comprising Micro- and Nanoscale Morphologies and Water-Soluble Siloxane for Efficient Anti-Icing and Deicing. ACS NANO 2024; 18:31957-31966. [PMID: 39495088 DOI: 10.1021/acsnano.4c09705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Photothermal superhydrophobic coatings offer immense promise for anti-icing and deicing applications. However, achieving long-term passive anti-icing and active deicing in photothermal superhydrophobic coating remains a significant challenge. We introduce a durable photothermal superhydrophobic coating, coprepared from water-soluble polytrimethylsiloxane (PMATF) in synergy with cactus-inspired composite nanoparticles (MPCS), which is composed of MoS2, polydopamine (PDA), Cu nanoparticles, and octadecanethiol (18-SH). The PM-MPCS coating exhibits a maximum water contact angle (WCA) of 171.8° and retains a high WCA after 330 cycles of sandpaper abrasion and 210 cycles of tape peeling. Additionally, the PM-MPCS coating exhibits exceptional photothermal conversion ability. The PM-MPCS films attain a surface temperature of 86.9 °C, displaying a photothermal conversion efficiency of 77.4%. In anti-icing tests conducted at -15 °C, PM-MPCS significantly prolonged the freezing time; the freezing time of a 5 μL water droplet was extended to 43 min. The active deicing performance is similarly effective, with PM-MPCS melting a 5 μL ice sphere in 5.5 min. Furthermore, PM-MPCS exhibits a low ice adhesion strength of 6.0 kPa, enabling effective ice removal even after numerous freeze-thaw cycles. The exceptional anti-icing and deicing performance can be attributed to the synergistic effects of the composite nanoparticles, which minimize ice penetration and enhance the photothermal conversion capabilities of the particles. These findings underscore the potential of PM-MPCS as a viable candidate for advanced anti-icing and deicing applications across various industries.
Collapse
Affiliation(s)
- Xudong Liu
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Shenzhen Li
- State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co., Ltd., Nanjing 211103, P. R. China
| | - Yuanlong Wu
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Tengfei Guo
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Junhao Xie
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Jinqiu Tao
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Hao Wu
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Qianping Ran
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
6
|
Yuan HB, Zhao M, Wang J, Chen G, Chen Z, Xing T. Flexible, breathable, and durable superhydrophobic cotton fabric modified by behenic acid, tung oil, and ZIF-8 with anti-icing and self-cleaning properties. Int J Biol Macromol 2024; 277:133847. [PMID: 39084982 DOI: 10.1016/j.ijbiomac.2024.133847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
Textiles with self-cleaning and anti-icing capabilities in cold climates are essential for outdoor workers and enthusiasts. Superhydrophobic modification of textile surfaces is effective in imparting these characteristics. Although there are numerous methods available for manufacturing superhydrophobic textiles, careful consideration is warranted for environmental concerns over fluorochemicals, stability of superhydrophobic coatings, and fabric breathability. In this work, we utilized biomass resources such as tung oil and behenic acid, along with zeolitic imidazolate framework (ZIF-8), to modify cotton fabrics, thereby creating an innovative behenic acid/tung oil/ZIF-8 modified cotton (BTZC) fabric with anti-icing and self-cleaning features. This material manifests a unique nanoflower-shaped surface morphology, demonstrating exceptional superhydrophobicity with a static water contact angle (CA) of 162° and a sliding angle (SA) of 2°. Moreover, BTZC excels in its thermal stability, breathability, and resistance to icing. Equally impressive is its robust stability, as evidenced through rigorous testing under continuous washing and abrasion, sustained high and low temperatures, extreme pH environments, and immersion in various chemical solvents. BTZC presents as a fluorine-free, durable, economically viable alternative for outdoor textile applications, marking substantial progress in the utilization of biomass and metal-organic framework materials in the textile industry and promising implications for value enhancement.
Collapse
Affiliation(s)
- Hua-Bin Yuan
- College of Textile and Clothing Engineering, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| | - Manman Zhao
- College of Textile and Clothing Engineering, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| | - Jiapeng Wang
- College of Textile and Clothing Engineering, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| | - Guoqiang Chen
- College of Textile and Clothing Engineering, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Tieling Xing
- College of Textile and Clothing Engineering, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China.
| |
Collapse
|
7
|
Niu H, Yao X, Luo S, Cui H, Chen W, Ahmmed MDA, Zhou R, Wang H, Wan L, Hu L. Composite Superhydrophobic Coating with Transparency and Thermal Insulation for Glass Curtain Walls. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48374-48385. [PMID: 39215694 DOI: 10.1021/acsami.4c11970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In this paper, the preparation of a transparent superhydrophobic composite coating with a thermal insulation function using antimony-doped tin oxide (ATO) nanoparticles is proposed, which has advantages of being mass-producible and low-cost. In short, nanosilica and ATO are used as raw materials for constructing rough structures, and superhydrophobic coatings are obtained by mixing and adding binders after modification of each, which are then applied to the surface of various substrates by spraying to obtain a transparent superhydrophobic coating with a heat-insulating function. The specific role of each nanoparticle is discussed through comparative experiments that illustrate the mechanism by which the two particles construct rough structures. The coating achieves unique thermal insulation properties while possessing excellent superhydrophobicity (WCA of ∼163° and WSA of ∼3°) and high light transmission (∼70%). Heat-shielding experiments have demonstrated that the composite coating effectively reduces the room temperature by approximately 19% for the same irradiation time. The coating achieves a balanced improvement in visible transmittance, thermal insulation, and superhydrophobicity. In addition, the coating's self-cleaning properties, mechanical properties, chemical weathering resistance, high-temperature resistance, and anti-icing properties were verified through various experiments.
Collapse
Affiliation(s)
- Haihong Niu
- Department of Electrical and Automation, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Xiaoyu Yao
- Department of Electrical and Automation, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Suikang Luo
- Department of Electrical and Automation, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Hao Cui
- Department of Electrical and Automation, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Wenlong Chen
- Department of Electrical and Automation, Hefei University of Technology, Hefei 230009, Anhui, China
| | - M D Asik Ahmmed
- Department of Electrical and Automation, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Ru Zhou
- Department of Electrical and Automation, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Huan Wang
- Department of Electrical and Automation, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Lei Wan
- Department of Electrical and Automation, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Liangliang Hu
- Department of Electrical and Automation, Hefei University of Technology, Hefei 230009, Anhui, China
| |
Collapse
|
8
|
Li S, Xiao P, Chen T. Superhydrophobic Solar-to-Thermal Materials Toward Cutting-Edge Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311453. [PMID: 38719350 DOI: 10.1002/adma.202311453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/30/2024] [Indexed: 05/16/2024]
Abstract
Solar-to-thermal conversion is a direct and effective way to absorb sunlight for heat via the rational design and control of photothermal materials. However, when exposed to water-existed conditions, the conventional solar-to-thermal performance may experience severe degradation owing to the high specific heat capacity of water. To tackle with the challenge, the water-repellent function is introduced to construct superhydrophobic solar-to-thermal materials (SSTMs) for achieving stable heating, and even, for creating new application possibilities under water droplets, sweat, seawater, and ice environments. An in-depth review of cutting-edge research of SSTMs is given, focusing on synergetic functions, typical construction methods, and cutting-edge potentials based on water medium. Moreover, the current challenges and future prospects based on SSTMs are also carefully discussed.
Collapse
Affiliation(s)
- Shan Li
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Peng Xiao
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Tao Chen
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
9
|
Yu H, Wang Y, Wang R, Ge Y, Wang L. Tannic acid crosslinked chitosan/gelatin/SiO 2 biopolymer film with superhydrophobic, antioxidant and UV resistance properties for prematuring fruit packaging. Int J Biol Macromol 2024; 275:133368. [PMID: 38945712 DOI: 10.1016/j.ijbiomac.2024.133368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/09/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
The environmental pollution caused by plastic films urgently requires the development of non-toxic, biodegradable, and renewable biopolymer films. However, the poor waterproof and UV resistance properties of biopolymer films have limited their application in fruit packaging. In this work, a novel tannic acid cross-linked chitosan/gelatin film with hydrophobic silica coating (CGTS) was prepared. Relying on the adhesion of tannic acid and gelatin to silica, the coating endows CGTS film with excellent superhydrophobic properties. Especially, the contact angle reaches a maximum value 152.6°. Meanwhile, tannic acid enhanced the mechanical strength (about 36.1 %) through the forming of hydrogen bonding and the network structure. The prepared CGTS films showed almost zero transmittance to ultraviolet light and exhibited excellent radical scavenging ability (∼76.5 %, DPPH). Hence, CGTS film is suitable as a novel multifunctional packaging material for the agriculture to protect premature fruits, or the food industry used in environments exposed to ultraviolet radiation and rainwater.
Collapse
Affiliation(s)
- Huanyang Yu
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, PR China.
| | - Yan Wang
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, PR China
| | - Rundong Wang
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, PR China
| | - Yuan Ge
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, PR China
| | - Liyan Wang
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, PR China; Key Laboratory of Building Energy-Saving Technology Engineering of Jilin Provincial, School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, PR China
| |
Collapse
|
10
|
Li J, Li D, Zhang Z, Yu C, Sun D, Mo Z, Wang J, Mohamed M, You H, Wan H, Li J, He S. Smart and Sustainable Crop Protection: Design and Evaluation of a Novel α-Amylase-Responsive Nanopesticide for Effective Pest Control. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12146-12155. [PMID: 38747516 DOI: 10.1021/acs.jafc.4c00980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
In this study, an α-amylase-responsive controlled-release formulation was developed by capping polydopamine onto β-cyclodextrin-modified abamectin-loaded hollow mesoporous silica nanoparticles. The prepared Aba@HMS@CD@PDA were subjected to characterization using various analytical techniques. The findings revealed that Aba@HMS@CD@PDA, featuring a loading rate of 18.8 wt %, displayed noteworthy release behavior of abamectin in the presence of α-amylase. In comparison to abamectin EC, Aba@HMS@CD@PDA displayed a significantly foliar affinity and improved rainfastness on lotus leaves. The results of field trail demonstrated a significantly higher control efficacy against Spodoptera litura Fabricius compared to abamectin EC at all concentrations after 7, 14, and 21 days of spaying, showcasing the remarkable persistence of Aba@HMS@CD@PDA. These results underscore the potential of Aba@HMS@CD@PDA as a novel and persistently effective strategy for sustainable on-demand crop protection. The application of nanopesticides can enhance the effectiveness and efficiency of pesticide utilization, contributing to more sustainable agricultural practices.
Collapse
Affiliation(s)
- Jiaqing Li
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street ,Wuhan 430070, China
| | - Donglin Li
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street ,Wuhan 430070, China
| | - Zhaoyang Zhang
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street ,Wuhan 430070, China
| | - Chang Yu
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street ,Wuhan 430070, China
| | - Dan Sun
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street ,Wuhan 430070, China
| | - Ziyao Mo
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street ,Wuhan 430070, China
| | - Jiayin Wang
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street ,Wuhan 430070, China
| | - Mmby Mohamed
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street ,Wuhan 430070, China
| | - Hong You
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street ,Wuhan 430070, China
| | - Hu Wan
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street ,Wuhan 430070, China
| | - Jianhong Li
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street ,Wuhan 430070, China
| | - Shun He
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street ,Wuhan 430070, China
| |
Collapse
|
11
|
Zhao Z, Song X, Zhang Y, Zeng B, Wu H, Guo S. Biomineralization-Inspired Copper Sulfide Decorated Aramid Textiles via In Situ Anchoring toward Versatile Wearable Thermal Management. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307873. [PMID: 37853209 DOI: 10.1002/smll.202307873] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Designing smart textiles for personal thermal management (PTM) is an effective strategy for thermoregulation and energy saving. However, the manufacture of versatile high-performance thermal management textiles for complex real-world environments remains a challenge due to the limitations of functional integration, material properties, and preparation procedures. In this study, an aramid fabric based on in situ anchored copper sulfide nanostructure is developed. The textile with excellent solar and Joule heating properties can effectively keep the body warm even at low energy inputs. Meanwhile, the reduced infrared emissivity of the textile decreases the thermal radiation losses and helps to maintain a constant body temperature. Impressively, the textile integrates superb electromagnetic shielding, near-complete UV protection properties, and ideal resistance to fire and bacteria. This work provides a simple strategy for fabricating multi-functional integrated wearable devices with flexibility and breathability, which is highly promising in versatile PTM applications.
Collapse
Affiliation(s)
- Zhiheng Zhao
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Xudong Song
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Yang Zhang
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Bingbing Zeng
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Hong Wu
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Shaoyun Guo
- The State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| |
Collapse
|
12
|
Muhammad A, Kidanemariam A, Lee D, Duong Pham TT, Park J. Durability of antimicrobial agent on nanofiber: A collective review from 2018 to 2022. J IND ENG CHEM 2024; 130:1-24. [DOI: 10.1016/j.jiec.2023.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Jiang J, Shen Y, Xu Y, Wang Z, Tao J, Liu S, Liu W, Chen H. An energy-free strategy to elevate anti-icing performance of superhydrophobic materials through interfacial airflow manipulation. Nat Commun 2024; 15:777. [PMID: 38278811 PMCID: PMC10817900 DOI: 10.1038/s41467-024-45078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Superhydrophobic surfaces demonstrate excellent anti-icing performance under static conditions. However, they show a marked decrease in icing time under real flight conditions. Here we develop an anti-icing strategy using ubiquitous wind field to improve the anti-icing efficiency of superhydrophobic surfaces during flight. We find that the icing mass on hierarchical superhydrophobic surface with a microstructure angle of 30° is at least 40% lower than that on the conventional superhydrophobic plate, which is attributed to the combined effects of microdroplet flow upwelling induced by interfacial airflow and microdroplet ejection driven by superhydrophobic characteristic. Meanwhile, the disordered arrangement of water molecules induced by the specific 30° angle also raises the energy barriers required for nucleation, resulting in an inhibition of the nucleation process. This strategy of microdroplet movement manipulation induced by interfacial airflow is expected to break through the anti-icing limitation of conventional superhydrophobic materials in service conditions and can further reduce the risk of icing on the aircraft surface.
Collapse
Affiliation(s)
- Jiawei Jiang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing, 210016, China
| | - Yizhou Shen
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing, 210016, China.
| | - Yangjiangshan Xu
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing, 210016, China
| | - Zhen Wang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing, 210016, China
| | - Jie Tao
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing, 210016, China.
| | - Senyun Liu
- key Laboratory of Icing and Anti/De-icing, China Aerodynamics Research and Development Center, 6 Erhuan South Rd., Mianyang, 621000, PR China
| | - Weilan Liu
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing, 210016, China
- Institute of Advanced Materials, Nanjing Tech University, 30 Puzhu South Rd., Nanjing, 210009, PR China
| | - Haifeng Chen
- Department of Materials Chemistry, Qiuzhen School, Huzhou University, 759# East 2nd Road, Huzhou, 313000, PR China
| |
Collapse
|
14
|
Pal SK, Jeong S, Otoufat T, Bae H, Kim G. Adaptive cooling strategy via human hair: High optothermal conversion efficiency of solar radiation into thermal dissipation. Proc Natl Acad Sci U S A 2024; 121:e2312297121. [PMID: 38236734 PMCID: PMC10823228 DOI: 10.1073/pnas.2312297121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
Natural species have developed complex nanostructures in a hierarchical pattern to control the absorption, reflection, or transmission of desired solar and infrared wavelengths. This bio-inspired structure is a promising method to manipulating solar energy and thermal management. In particular, human hair is used in this article to highlight the optothermal properties of bio-inspired structures. This study investigated how melanin, an effective solar absorber, and the structural morphology of aligned domains of keratin polymer chains, leading to a significant increase in solar path length, which effectively scatter and absorb solar radiation across the hair structure, as well as enhance thermal ramifications from solar absorption by fitting its radiative wavelength to atmospheric transmittance for high-yield radiative cooling with realistic human body thermal emission.
Collapse
Affiliation(s)
- Sudip Kumar Pal
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon38822, Republic of Korea
| | - Soohyun Jeong
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon38822, Republic of Korea
| | - Tohid Otoufat
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon38822, Republic of Korea
| | - Hoyeon Bae
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon38822, Republic of Korea
| | - Gunwoo Kim
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon38822, Republic of Korea
| |
Collapse
|
15
|
Xie F, Wang T, Li Y, Pan Y, Guo P, Liu C, Shen C, Liu X. Ag Nanoparticles-Coated Shish-Kebab Superstructure Film for Wearable Heater. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38040021 DOI: 10.1021/acsami.3c14848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Passive and active wearable heaters have received widespread attention due to their efficient utilization of solar energy and all-weather heating capabilities, but the current challenges are their preparation processes being time-consuming and equipment expensive. Herein, a simple and facilitated preparation method for the multifunctional wearable heater was developed, which springs Ag nanoparticles on the shish-kebab superstructure film via deposited melanin-like polydopamine as the adhesive. The light absorption ability of the resultant wearable heater in the visible region can be significantly enhanced by the addition of polydopamine, realizing a highly efficient photothermal conversion ability. Accordingly, it can achieve rapid warming ability whether passive heating (up to 45 °C about 60 s at 100 mW/cm2) or active heating (up to 72 °C about 40 s at 0.6 V), compared to ordinary cotton fabric. In addition, it can realize a 6.3 °C temperature difference with Cotton, showing excellent heat preservation ability. This study demonstrates a simple and low-cost approach for the prepared shish-kebab superstructure-based wearable heaters.
Collapse
Affiliation(s)
- Fengsen Xie
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Tengrui Wang
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Yingnuo Li
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Yamin Pan
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Pan Guo
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Chuntai Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Changyu Shen
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Xianhu Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| |
Collapse
|
16
|
Zhang L, Luo B, Fu K, Gao C, Han X, Zhou M, Zhang T, Zhong L, Hou Y, Zheng Y. Highly Efficient Photothermal Icephobic/de-Icing MOF-Based Micro and Nanostructured Surface. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304187. [PMID: 37632716 DOI: 10.1002/advs.202304187] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/08/2023] [Indexed: 08/28/2023]
Abstract
Photothermal materials have gained considerable attention in the field of anti-/de-icing due to its environmental friendliness and energy saving. However, it is always significantly challenging to obtain solar thermal materials with hierarchical structure and simultaneously demonstrate both the ultra-long icing delay ability and the superior photothermal de-icing ability. Here, a photothermal icephobic MOF-based micro and nanostructure surface (MOF-MNS) is presented, which consists of micron groove structure and fluorinated MOF nanowhiskers. The optimal MOF-M250 NS can achieve solar absorption of over 98% and produce a high temperature increment of 65.5 °C under 1-sun illumination. Such superior photothermal-conversion mechanism of MOF-M250 NS is elucidated in depth. In addition, the MOF-M250 NS generates an ultra-long icing delay time of ≈3960 s at -18 °C without solar illumination, achieving the longest delay time, which isn't reported before. Due to its excellent solar-to-heat conversation ability, accumulated ice and frost on MOF-M250 NS can be rapidly melted within 720 s under 1-sun illumination and it also holds a high de-icing rate of 5.8 kg m-2 h-1 . MOF-M250 NS possesses the versatility of mechanical robustness, chemical stability, and low temperature self-cleaning, which can synergistically reinforce the usage of icephobic surfaces in harsh conditions.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University (BUAA), Beijing, 100191, P. R. China
| | - Bingcai Luo
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University (BUAA), Beijing, 100191, P. R. China
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Kun Fu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 20092, P. R. China
| | - Chunlei Gao
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University (BUAA), Beijing, 100191, P. R. China
| | - Xuefeng Han
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University (BUAA), Beijing, 100191, P. R. China
| | - Maolin Zhou
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University (BUAA), Beijing, 100191, P. R. China
| | - Tiance Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University (BUAA), Beijing, 100191, P. R. China
| | - Lieshuang Zhong
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University (BUAA), Beijing, 100191, P. R. China
| | - Yongping Hou
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University (BUAA), Beijing, 100191, P. R. China
| | - Yongmei Zheng
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University (BUAA), Beijing, 100191, P. R. China
| |
Collapse
|
17
|
Gu B, Xu Q, Wang H, Pan H, Zhao D. A Hierarchically Nanofibrous Self-Cleaning Textile for Efficient Personal Thermal Management in Severe Hot and Cold Environments. ACS NANO 2023; 17:18308-18317. [PMID: 37703206 DOI: 10.1021/acsnano.3c05460] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Climate change has recently caused more and more severe temperatures, inducing a growing demand for personal thermal management at outdoors. However, designing textiles that can achieve personal thermoregulation without energy consumption in severely hot and cold environments remains a huge challenge. Herein, a hierarchically nanofibrous (HNF) textile with improved thermal insulation and radiative thermal management functions is fabricated for efficient personal thermal management in severe temperatures. The textile consists of a radiative cooling layer, an intermediate thermal insulation layer, and a radiative heating layer, wherein the porous lignocellulose aerogel membrane (LCAM) as intermediate layer has low thermal conductivity (0.0366 W·m-1·K-1), ensuring less heat loss in cold weather and blocking external heat in hot weather. The introduction of polydimethylsiloxane (PDMS) increases the thermal emissivity (90.4%) of the radiative cooling layer in the atmospheric window and also endows it with a perfect self-cleaning performance. Solar absorptivity (80.1%) of the radiative heating layer is dramatically increased by adding only 0.05 wt% of carbon nanotubes (CNTs) into polyacrylonitrile. An outdoor test demonstrates that the HNF textile can achieve a temperature drop of 7.2 °C compared with white cotton in a hot environment and can be as high as 12.2 °C warmer than black cotton in a cold environment. In addition, the HNF textile possesses excellent moisture permeability, breathability, and directional perspiration performances, making it promising for personal thermal management in severely hot and cold environments.
Collapse
Affiliation(s)
- Bin Gu
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Qihao Xu
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hongkui Wang
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Haodan Pan
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Dongliang Zhao
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
- Institute of Science and Technology for Carbon Neutrality, Southeast University, Nanjing, Jiangsu 210096, China
- Engineering Research Center of Building Equipment, Energy, and Environment, Ministry of Education, Nanjing, Jiangsu 210096, China
| |
Collapse
|
18
|
Liu X, Li S, Wu Y, Guo T, Xie J, Tao J, Dong L, Ran Q. Robust All-Waterborne Superhydrophobic Coating with Photothermal Deicing and Passive Anti-icing Properties. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44305-44313. [PMID: 37698376 DOI: 10.1021/acsami.3c09150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The compelling integration of superhydrophobic coatings with light-to-heat conversion capabilities has garnered substantial interest due to their dual functionality encompassing passive anti-icing and deicing attributes. However, the insufficient mechanical stability and the environmental and human health concerns stemming from the extensive use of organic solvents limit their practical application. In this study, an all-waterborne superhydrophobic photothermal coating (PCPAS) was prepared through the synergy of composite micro-nanoparticles derived from carbon nanotubes (CNT), polydopamine (PDA), and Ag particles with fluorine-containing polyacrylic emulsion (PFA). The PDA provided active sites for Ag+ reduction reaction and enhanced the interfacial interaction between CNT and Ag particles. The interfacial enhancement enabled the coating to maintain stable superhydrophobicity after 260 times sandpaper abrasion and 240 times tape peeling. Simultaneously, the composite micro-nanoparticle's light-to-heat conversion ability gave the coating excellent anti-icing/deicing capabilities. Under the condition of -20 °C, the freezing time of 30 μL of water droplets was extended to 392 s, and 2 × 2 × 2 cm ice cubes placed on the surface of the coating could completely melt after only 1142 s under simulated sunlight irradiation with a 1 kW/m2 intensity. In addition, the coating also had suitable self-cleaning properties and substrate applicability. The comprehensive attributes of this all-waterborne photothermal superhydrophobic coating render it a promising contender for anti-icing and deicing applications in challenging outdoor environments.
Collapse
Affiliation(s)
- Xudong Liu
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Shenzhen Li
- State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co., Ltd., Nanjing 211103, China
| | - Yuanlong Wu
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Tengfei Guo
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Junhao Xie
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Jinqiu Tao
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Lei Dong
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Qianping Ran
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
19
|
Huang J, Li D, Peng Z, Zhang B, Yao Y, Chen S. High-Efficient Anti-Icing/Deicing Method Based on Graphene Foams. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43026-43037. [PMID: 37647497 DOI: 10.1021/acsami.3c09360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Anti-icing/deicing has always been a focal issue in modern industries. A novel anti-icing/deicing material based on graphene foams (GF) is prepared in this paper, which integrates multiple functions, including electrothermal conversion, photothermal conversion, and superhydrophobicity. The GF sheet is used as a bottom layer bonded on the protected substrate, which is covered by a polymeric composite coating filled with TiN and SiO2 nanoparticles. Electric heating and light heating experiments are performed to study the anti-icing/deicing performances of such a GF-based material. It is found that, under the unique action of electric fields, a voltage of only 1 V is needed to increase the surface temperature from minus tens of degrees to the one above zero within 400 s, which is much lower than their previous counterparts of more than 10 V to achieve the same unfreezing effect. A slight increase of the applied voltage to 1.5 V can even result in a remarkable increase of the surface temperature from room temperature to more than 150 °C within 200 s, in contrast to existing electric heating techniques to attain peak temperatures of about 100 °C at the expense of tens of volts. Such performances enable the GF-based material to achieve an outstanding electrothermal energy conversion rate of more than 90%. Furthermore, with the help of sunlight illumination in addition to the electric power, not only can the critical voltage to prevent icing be reduced but also a much more rapid and adequate removal of ice or frost from the surface can be realized compared with the deicing/defrosting performance under either electric or light field alone. All of these results demonstrate the obvious advantages of the present method in superior energy utilization efficiency and universal applicability to dark and sunlight environments, which should be particularly useful for at-all-cost protection of key components in industrial equipment from icing.
Collapse
Affiliation(s)
- Jianan Huang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| | - Dawei Li
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| | - Zhilong Peng
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| | - Bo Zhang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| | - Yin Yao
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| | - Shaohua Chen
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|