1
|
Wang S, Meng W, An Y, Wang Z, Hosono H, Wang J. Two-Dimensional Rare-Earth Metal Phosphides: From Weyl Semimetal to Semiconductor. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69733-69743. [PMID: 39630009 DOI: 10.1021/acsami.4c16211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Two-dimensional (2D) nanomaterials have garnered extensive attention owing to their unique properties and versatile application. Here, a family of 2D rare-earth metal phosphides (M2P, M = Sc, Y, La) and their derivatives M2POT (T = F, OH) is developed to find their topological and electronic properties on the basis of density functional theory simulations. We show that the 2D M2P compounds are most possibly obtained from thermodynamically stable M2InP by chemical exfoliation. The In with a substantial atomic radius of 156 pm exhibits weak polarization ability, resulting in homogeneity of the electron cloud and a weakening of the M-In bond relative to the M-P bond. Upon exfoliation of the In layer, the M22+P3-:e- emerges as an electride with surface electrons, which is attributed to the larger ion radius and lower electronegativity of M2+ ions in M2P. The metallic M2P is found to be a Weyl semimetal derived from the contribution of surface electrons. Further, by leveraging the high reactivity of surface electrons, surface functionalization can produce M2POT compounds with the increased valence state of M3+, which results in their semiconducting properties characterized by high carrier mobilities and strong built-in electronic fields. These distinct topological and electronic characteristics position the 2D M2P and M2POT as promising candidates for a wide range of applications.
Collapse
Affiliation(s)
- Shiyao Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- MDX Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Weizhen Meng
- College of Physics, Hebei Key Laboratory of Photophysics Research and Application, Hebei Normal University, Shijiazhuang 050024, China
| | - Yurong An
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Zhiqi Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hideo Hosono
- MDX Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Junjie Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
2
|
Song J, Chen H, Sun Y, Liu Z. Layered MXene Films via Self-Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406855. [PMID: 39396384 DOI: 10.1002/smll.202406855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/18/2024] [Indexed: 10/15/2024]
Abstract
MXene has attracted significant attention as a 2D material family due to its metallic conductivity and abundant surface functional groups and has been extensively studied and applied as bulk materials and microscale thin films. MXene possesses ionizable surfaces and edges, as well as high surface area. Its customizable dispersibility demonstrates unique advantages in self-assembly solution processing. Recent studies have demonstrated the application value of layered MXene films at the nanoscale thickness and the reliance of processing on self-assembly techniques. However, this field currently lacks sufficient attention. Here, the regulatory mechanisms are summarized for the preparation of layered MXene films through self-assembly techniques, as well as introduce their applications. Moreover, the future challenges of large-scale applications of MXene self-assembly techniques are proposed. It is believed that this review would provide a dynamic and promising path for the development of layered MXene self-assembly techniques.
Collapse
Affiliation(s)
- Jiafeng Song
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| | - Hongwu Chen
- Research Institute of Petroleum Processing, Sinopec, Beijing, 100728, China
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Yilin Sun
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhifang Liu
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
3
|
B. P. Querne M, C. Dias A, Janotti A, Da Silva JLF, Lima MP. Tuning Excitonic Properties of Monochalcogenides via Design of Janus Structures. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:12164-12177. [PMID: 39081561 PMCID: PMC11284856 DOI: 10.1021/acs.jpcc.4c01813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024]
Abstract
Two-dimensional (2D) Janus structures offer a unique range of properties as a result of their symmetry breaking, resulting from the distinct chemical composition on each side of the monolayers. Here, we report a theoretical investigation of 2D Janus Q'A'AQ P3m1 monochalcogenides from group IV (A and A' = Ge and Sn; Q, Q' = S and Se) and 2D non-Janus QAAQ P3̅m1 counterparts. Our theoretical framework is based on density functional theory calculations combined with maximally localized Wannier functions and tight-binding parametrization to evaluate the excitonic properties. The phonon band structures exhibit exclusively real (nonimaginary) branches for all materials. Particularly, SeGeSnS has greater energetic stability than its non-Janus counterparts, representing an outstanding energetic stability among the investigated materials. However, SGeSnS and SGeSnSe have higher formation energies than the already synthesized MoSSe, making them more challenging to grow than the other investigated structures. The electronic structure analysis demonstrates that materials with Janus structures exhibit band gaps wider than those of their non-Janus counterparts, with the absolute value of the band gap predominantly determined by the core rather than the surface composition. Moreover, exciton binding energies range from 0.20 to 0.37 eV, reducing band gap values in the range of 21% to 32%. Thus, excitonic effects influence the optoelectronic properties more than the point-inversion symmetry breaking inherent in the Janus structures; however, both features are necessary to enhance the interaction between the materials and sunlight. We also found anisotropic behavior of the absorption coefficient, which was attributed to the inherent structural asymmetry of the Janus materials.
Collapse
Affiliation(s)
- Mateus B. P. Querne
- Department
of Physics, Federal University of São
Carlos, 13565-905, São Carlos, São Paulo, Brazil
| | - Alexandre C. Dias
- University
of Brasília, Institute of Physics
and International Center of Physics, Brasília 70919-970, DF, Brazil
| | - Anderson Janotti
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| | - Juarez L. F. Da Silva
- São
Carlos Institute of Chemistry, University
of São Paulo, P.O. Box 780, 13560-970, São Carlos, São Paulo, Brazil
| | - Matheus P. Lima
- Department
of Physics, Federal University of São
Carlos, 13565-905, São Carlos, São Paulo, Brazil
| |
Collapse
|
4
|
Thasitha S, Tsuppayakorn-Aek P, Udomkijmongkol A, Khammuang S, Kaewmaraya T, Hussain T, Bovornratanaraks T, Kotmool K. First-principles study on structural stabilities, mechanical properties, and biaxial strain-induced superconductivity in Janus MoWC monolayer. Phys Chem Chem Phys 2024; 26:19696-19704. [PMID: 38835236 DOI: 10.1039/d4cp01215a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The unique attributes of hydrophilicity, expansive surface groups, remarkable flexibility, and superior conductivity converge in MXene, a pioneering 2D material. Owing to MXene's exceptional properties, diverse strategies have been explored to enhance its characteristics. Janus MXene and stress-strain response considerations represent the primary avenues of interest today. In this study, we investigated the Janus MXene structure under biaxial stress using first-principles calculations. The most stable configuration of Janus MoWC MXene identified in our analysis exhibits an atomic arrangement known as the hexagonal (2H) phase. Subsequently, we examined the mechanical and electronic properties of 2H-MoWC when subjected to biaxial strain. Our findings indicate that the 2H phase of Janus MoWC MXene demonstrates superior strength compared to the tetragonal (1T) phase. Analysis of the ELF of the 2H-MoWC structure unveiled that the robust C-C bond within the material is the underlying factor enabling the 2H phase to withstand a maximum of 9% tensile strain. Furthermore, we demonstrate that 2H-MoWC is a superconductor with the superconducting temperature (Tc) of 1.6 K, and the superconductivity of 2H phase can be enhanced by biaxial strain with the Tc reaching 7 K. This study offers comprehensive insights into the properties of Janus MoWC monolayer under biaxial stress, positioning it as a promising candidate for 2D straintronic applications.
Collapse
Affiliation(s)
- Sirinee Thasitha
- College of Advanced Manufacturing Innovation, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| | - Prutthipong Tsuppayakorn-Aek
- Extreme Conditions Physics Research Laboratory and Center of Excellence in Physics of Energy Materials (CE:PEM), Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anan Udomkijmongkol
- College of Advanced Manufacturing Innovation, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| | - Satchakorn Khammuang
- College of Advanced Manufacturing Innovation, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| | - Thanayut Kaewmaraya
- Integrated Nanotechnology Research Center, Department of Physics, Khon Kaen University, Khon Kaen, Thailand
- Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), NANOTEC-KKU RNN on Nanomaterials Research and Innovation for Energy, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Tanveer Hussain
- School of Science and Technology, University of New England, Armidale, New South Wales 2351, Australia
| | - Thiti Bovornratanaraks
- Extreme Conditions Physics Research Laboratory and Center of Excellence in Physics of Energy Materials (CE:PEM), Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok, 10400, Thailand
| | - Komsilp Kotmool
- College of Advanced Manufacturing Innovation, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| |
Collapse
|
5
|
Duan Z, Yuan M, Liu Z, Pei W, Jiang K, Li L, Shen G. An Ultrasensitive Ti 3C 2T x MXene-based Soft Contact Lens for Continuous and Nondestructive Intraocular Pressure Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309785. [PMID: 38377279 DOI: 10.1002/smll.202309785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/08/2024] [Indexed: 02/22/2024]
Abstract
Wearable soft contact lens sensors for continuous and nondestructive intraocular pressure (IOP) monitoring are highly desired as glaucoma and postoperative myopia patients grow, especially as the eyestrain crowd increases. Herein, a smart closed-loop system is presented that combines a Ti3C2Tx MXene-based soft contact lens (MX-CLS) sensor, wireless data transmission units, display, and warning components to realize continuous and nondestructive IOP monitoring/real-time display. The fabricated MX-CLS device exhibits an extremely high sensitivity of 7.483 mV mmHg-1, good linearity on silicone eyeballs, excellent stability under long-term pressure-release measurement, sufficient transparency with 67.8% transmittance under visible illumination, and superior biocompatibility with no discomfort when putting the MX-CLS sensor onto the Rabbit eyes. After integrating with the wireless module, users can realize real-time monitoring and warning of IOP via smartphones, the demonstrated MX-CLS device together with the IOP monitoring/display system opens up promising platforms for Ti3C2Tx materials as the base for multifunctional contact lens-based sensors and continuous and nondestructive IOP measurement system.
Collapse
Affiliation(s)
- Zhongyi Duan
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Miao Yuan
- State Key Laboratory of Integrated Optoelectronics Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Zhiduo Liu
- School of Physics, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Weihua Pei
- State Key Laboratory of Integrated Optoelectronics Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Kai Jiang
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Institute of Hepatobiliary Surgery of Chinese PLA & Key Laboratory of Digital Hepatobiliary Surgery, Beijing, 100853, P. R. China
| | - La Li
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
6
|
Deng Z, Jiang P, Wang Z, Xu L, Yu ZZ, Zhang HB. Scalable Production of Catecholamine-Densified MXene Coatings for Electromagnetic Shielding and Infrared Stealth. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304278. [PMID: 37431209 DOI: 10.1002/smll.202304278] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Indexed: 07/12/2023]
Abstract
Processing transition metal carbides/nitrides (MXenes) inks into large-area functional coatings expects promising potential for electromagnetic interference (EMI) shielding and infrared stealth. However, the coating performances, especially for scalable fabrication techniques, are greatly constrained by the flake size and stacking manner of MXene. Herein, the large-area production of highly densified and oriented MXene coatings is demonstrated by engineering interfacial interactions of small MXene flakes with catecholamine molecules. The catecholamine molecules can micro-crosslink MXene nanosheets, significantly improving the ink's rheological properties. It favors the shear-induced sheet arrangement and inhibition of structural defects in the blade coating process, making it possible to achieve high orientation and densification of MXene assembly by either large-area coating or patterned printing. Interestingly, the MXene/catecholamine coating exhibits high conductivity of up to 12 247 S cm-1 and ultrahigh specific EMI shielding effectiveness of 2.0 ×10 5 dB cm2 g-1 , obviously superior to most of the reported MXene materials. Furthermore, the regularly assembled structure also endows the MXene coatings with low infrared emissivities for infrared stealth applications. Therefore, MXene/catecholamine coatings with ultraefficient EMI shielding and low infrared emissivity prove the feasibility of applications in aerospace, military, and wearable devices.
Collapse
Affiliation(s)
- Zhiming Deng
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Peizhu Jiang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhenguo Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Li Xu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhong-Zhen Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hao-Bin Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
7
|
Liang C, Qiu H, Zhang Y, Liu Y, Gu J. External field-assisted techniques for polymer matrix composites with electromagnetic interference shielding. Sci Bull (Beijing) 2023; 68:1938-1953. [PMID: 37541794 DOI: 10.1016/j.scib.2023.07.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/06/2023]
Abstract
The rapid development of mobile devices has greatly improved the lives of people, but they have also caused problems with electromagnetic interference (EMI) and information security. Therefore, there is an urgent need to develop high performance EMI shielding materials to suppress electromagnetic radiation and prevent information leakage. Some reports point out that the self-orientation behavior of fillers under external forces contributes to the improvement of EMI shielding performance. So how to construct an effective filler orientation structure in the polymer matrix is becoming a hot topic in the research of EMI shielding materials. In view of the fact that there are few reports on the preparation of polymer matrix EMI shielding composites by external field induction, from this perspective, we first highly focus on strategies for the construction of conductive networks within composites based on external field induction. Subsequently, the research progress on the preparation of polymer matrix EMI shielding composites by inducing the orientation of inorganic fillers through external fields, including temperature, electrostatic, gravity, mechanical force and magnetic fields, is organized and sorted out in detail. Notably, the particular response relationship between the unique composite structures prepared by external field induction and the incident electromagnetic waves is further dissected. Finally, the key scientific problems that need to be solved in the preparation of polymer matrix EMI shielding composites assisted by external fields are proposed. The approach discussed and the strategies proposed are expected to provide some guidance for the innovative design of high-performance polymer matrix EMI shielding composites.
Collapse
Affiliation(s)
- Chaobo Liang
- Shanxi Key Laboratory of Nano Functional Composites, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China; Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hua Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yali Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yaqing Liu
- Shanxi Key Laboratory of Nano Functional Composites, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China.
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
8
|
Wan B, Liu N, Zhang Z, Fang X, Ding Y, Xiang H, He Y, Liu M, Lin X, Tang J, Li Y, Tang B, Zhou G. Water-dispersible and stable polydopamine coated cellulose nanocrystal-MXene composites for high transparent, adhesive and conductive hydrogels. Carbohydr Polym 2023; 314:120929. [PMID: 37173010 DOI: 10.1016/j.carbpol.2023.120929] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 05/15/2023]
Abstract
High conductive and transparent hydrogels with adhesion function are ideal candidates for soft electronic devices. However, it remains a challenge to design appropriate conductive nanofillers to endow hydrogels with all these characteristics. The 2D MXene sheets are promising conductive nanofillers for hydrogels due to excellent electricity and water-dispersibility. However, MXene is quite susceptible to oxidation. In this study, polydopamine (PDA) was employed to protect the MXene from oxidation and meanwhile endow hydrogels with adhesion. However, PDA coated MXene (PDA@MXene) were easily flocculated from dispersion. 1D cellulose nanocrystals (CNCs) were employed as steric stabilizers to prevent the agglomeration of MXene during the self-polymerization of dopamine. The obtained PDA coated CNC-MXene (PCM) sheets display outstanding water-dispersible and anti-oxidation stability and are promising conductive nanofillers for hydrogels. During the fabrication of polyacrylamide hydrogels, the PCM sheets were partially degraded into PCM nanoflakes with smaller size, leading to transparent PCM-PAM hydrogels. The PCM-PAM hydrogels can self-adhere to skin, and possess high transmittance of 75 % at 660 nm, superior electric conductivity of 4.7 S/m with MXene content as low as 0.1 % and excellent sensitivity. This study will facilitate the development of MXene based stable, water-dispersible conductive nanofillers and multi-functional hydrogels.
Collapse
Affiliation(s)
- Bolin Wan
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Nana Liu
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Zhen Zhang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.
| | - Xiong Fang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Yugao Ding
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Haosheng Xiang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Yunqing He
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Mingxian Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China.
| | - Xiaoming Lin
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Juntao Tang
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yingzhan Li
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Biao Tang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.
| | - Guofu Zhou
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|