1
|
Liu H, Lu Y, Peng B, Wei J, Dai H, Wang L, Zhu H, He H. Cellulose self-erasing material with dual functions in information encryption. Carbohydr Polym 2025; 357:123444. [PMID: 40158981 DOI: 10.1016/j.carbpol.2025.123444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025]
Abstract
Materials capable of multiple encryption, color-changing visualizations, and time-dependent functionalities are ideal for efficient and secure information storage and transmission. In this study, a time-dependent self-erasing material (TDSEM) containing urease developed through the in-situ synthesis of gold nanoclusters on the surface of cellulose nanocrystal (CNC) chemically bonding fluorescein isothiocyanate. CNC not only played an important role as a long-term stabilizer for the material, but also acted as a bridge facilitating the assembly of organic and inorganic interfaces, enabling the integrated system to achieve multi-color regulation and fluorescence resonance energy transfer. The TDSEM demonstrated excellent pH responsiveness, cyclic stability, and durability. The information was encoded by directly introducing HCl/urea into the TDSEM, and automatically erased over time. Additionally, the fluorescence intensity and color (transitioning from red to orange to green) were modulated over a time scale by adjusting the urea concentration, thus precisely controlling the time to retrieve the correct information (22 min). The confidentiality of the encoded information was enhanced by dual "locking" of time and color, ensuring that decryption only occurred "time color key". This time-dependent and color-varying dual functions provide valuable insights for the development of advanced information encryption and anti-counterfeiting technologies.
Collapse
Affiliation(s)
- Hui Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yi Lu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Bitao Peng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jingxian Wei
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Hongli Dai
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Lei Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Hongxiang Zhu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Hui He
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
2
|
Fu W, Qi M, Rong Y, Lin C, Guo W, Su B. Remote On-Paper Electrochemiluminescence-Based High-Safety and Multilevel Information Encryption. Angew Chem Int Ed Engl 2025; 64:e202420184. [PMID: 39659206 DOI: 10.1002/anie.202420184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/27/2024] [Accepted: 12/11/2024] [Indexed: 12/12/2024]
Abstract
The escalating needs in information protection underscore the urgency of developing advanced encryption strategies. Herein we report a novel chemical approach that enables information encryption by on-paper electrochemiluminescence (ECL). Dendritic porous silica nanospheres modified with polyetherimide and bovine serum albumin were prepared as the chemical ink to write the secret message on a paper. Attaching the paper to an electrode, immersing it in a solution containing tris(2,2'-bipyridyl)ruthenium (Ru(bpy)3 2+) and then applying a suitable voltage, a remote "catalytic route" electrochemical reaction produces ECL that functions as the key to decrypt and visualize the message by imaging. In addition, proteins can be also used as the biological ink to write the secret message, which is then decrypted by a combined use of immunochemistry and ECL imaging as two keys. We believe the ECL-based strategy holds great promise in high-safety and multilevel information encryption, as it is protected not only by encoding, like conventional invisible inks, but also by the unique ECL decoding approach.
Collapse
Affiliation(s)
- Wenxuan Fu
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Min Qi
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yidan Rong
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Chukai Lin
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Weiliang Guo
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| |
Collapse
|
3
|
Song Z, Yi Z, Wu M, He M. Dynamic borate ester bonds mediated patterned anisotropic hydrogels for information encryption. POLYMER 2025; 317:127952. [DOI: 10.1016/j.polymer.2024.127952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Zhao J, Zhou Y, Zhang X, Zheng Y, Liu J, Bao Y, Shan G, Guo H, Yu C, Pan P. Spatially and Temporally Programmable Transparency Evolutions in Hydrogels Enabled by Metal Coordination toward Transient Anticounterfeiting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401261. [PMID: 38533971 DOI: 10.1002/smll.202401261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/10/2024] [Indexed: 03/28/2024]
Abstract
Hydrogels have emerged as promising candidates for anticounterfeiting materials, owing to their unique stimulus-responsive capabilities. To improve the security of encrypted information, efforts are devoted to constructing transient anticounterfeiting hydrogels with a dynamic information display. However, current studies to design such hydrogel materials inevitably include sophisticated chemistry, complex preparation processes, and particular experimental setups. Herein, a facile strategy is proposed to realize the transient anticounterfeiting by constructing bivalent metal (M2+)-coordination complexes in poly(acrylic acid) gels, where the cloud temperature (Tc) of the gels can be feasibly tuned by M2+ concentration. Therefore, the multi-Tc parts in the gel can be locally programmed by leveraging the spatially selective diffusion of M2+ with different concentrations. With the increase of temperature or the addition of a complexing agent, the transparency of the multi-Tc parts in the gel spontaneously evolves in natural light, enabling the transient information anticounterfeiting process. This work has provided a new strategy and mechanism to fabricate advanced anticounterfeiting hydrogel materials.
Collapse
Affiliation(s)
- Jin Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, 324000, China
| | - Yichen Zhou
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xing Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Ying Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, 324000, China
| | - Junfeng Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, 324000, China
| | - Yongzhong Bao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, 324000, China
| | - Guorong Shan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, 324000, China
| | - Hui Guo
- School of Chemical Engineering and Technology, The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Zhuhai, 519082, China
| | - Chengtao Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, 324000, China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, 324000, China
| |
Collapse
|
5
|
Zhang T, Wang W, Ju X, Liu Z, Pan D, Xie R, Chu L. A thermo-responsive hydrogel for body temperature-induced spontaneous information decryption and self-encryption. Chem Commun (Camb) 2024; 60:7156-7159. [PMID: 38912556 DOI: 10.1039/d4cc01349b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
A thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) hydrogel, exhibiting an interesting phenomenon of an opaque-transparent-opaque transition in the successive processes of heating and cooling, is reported. It is fabricated by means of both the porogenic effect of hydroxypropyl cellulose and the cononsolvency effect of PNIPAM in a mixed solvent of dimethyl sulfoxide and water. After being mildly triggered by body temperature, the hydrogel is used to spontaneously decrypt the quick response code within 4 min and then autonomously encrypts the code again within 10 min at room temperature. The mechanism for the transient transparency of hydrogels during the quenching process has been elucidated.
Collapse
Affiliation(s)
- Tingying Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Xiaojie Ju
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Dawei Pan
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Liangyin Chu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
6
|
Chen JS, Wang CM, Chiang PY, Lo LC, Liao WS. Spatially Mediated Paper Reactors for On-Site Multicoded Encryption. JACS AU 2024; 4:2151-2159. [PMID: 38938820 PMCID: PMC11200220 DOI: 10.1021/jacsau.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 06/29/2024]
Abstract
This report develops a point-of-use chemical trigger and applies it to a dual-functional chemical encryption chip that enables manual and digital identification with enhanced coding security levels suitable for on-site information verification. The concept relies on conducting continuous chemical synthesis and chromatographic separation of specified compounds on a paper device in a straightforward sketch. In addition to single-step chemical reactions, cascade syntheses and operations involving components of distinct mobilities are also demonstrated. The condensation of dione and hydrazine is first demonstrated on a linear paper reactor, where precursors can mix to react, followed by final product separation under optimized conditions. This linear paper reactor design can also support a multistep cascade Wittig reaction by controlling the relative mobility of reactants, intermediates, and final products. Furthermore, a three-dimensional paper reactor with appropriate mobile phases helps to initiate complex solvent system-driven azide-alkyne cycloaddition. By the use of a three-dimensional device design for spatially limited interdevice reactant transportation, reactants crossing designated boundaries trigger confined chemical reactions at specific positions. Accumulation of repetitive reactions leads to successful product gradient generation and mixing effects, representing a fully controllable intersubstrate chemical operation on the platform. Standing on initiating desired chemical reactions at particular interface regions, integration of appropriate selective reaction area, numerical digits overlay, color diversity, and mobile recognition realizes this dual-functional multicoding encryption process.
Collapse
Affiliation(s)
- Jia-Syuan Chen
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chang-Ming Wang
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Po-Yu Chiang
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Lee-Chiang Lo
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Ssu Liao
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Center
for Emerging Material and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
7
|
Dong S, Zheng Q, Tang M, Zhu S, Nie J, Du B. Ionic Microgel Colloidal Crystals: Responsive Chromism in Dual Physical and Chemical Colors for High-End Information Security and Encryption. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37418692 DOI: 10.1021/acsami.3c03742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Chromic materials play a decisive and escalating role in information security. However, it is challenging to develop chromic materials for encryption technologies that can hardly be imitated. Inspired by versatile metachrosis in nature, a series of coumarin-based 7-(6-bromohexyloxy)-coumarin microgel colloidal crystals (BrHC MGCC) with multiresponsive chromism are able to be assembled by ionic microgels in poly(vinyl alcohol) (PVA) solution followed by two cycles of freezing-thawing. The ionic microgels can be finely tailored by in situ quaternization with tunable size under varied temperatures and hydration energies of counterions as well as quenched luminescence under UV irradiation, which endows BrHC MGCC with intriguing chromism in the dual-channel coloration of physical structural color and chemical fluorescent color. Three types of BrHC MGCC exhibit various change ranges in structural coloration and similar quenching in fluorescence emission, which can be utilized for the development of the static-dynamic combined anticounterfeiting system with dual coloration. The information conveyed by the BrHC MGCC array presents dynamic variation versus temperature, while the static information can be only integrally read in both sunlight and a 365 nm UV lamp. The fabrication of a microgel colloidal crystal with dual coloration opens a facile and ecofriendly window for multilevel information security, camouflage, and a cumbersome authentication process.
Collapse
Affiliation(s)
- Shunni Dong
- National Key Laboratory of Biobased Transportation Fuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qianqian Zheng
- National Key Laboratory of Biobased Transportation Fuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Meiqi Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Shaoxiong Zhu
- National Key Laboratory of Biobased Transportation Fuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jingjing Nie
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Binyang Du
- National Key Laboratory of Biobased Transportation Fuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|