1
|
Huang Y, Qian Y, Chang Y, Yu J, Li Q, Tang M, Yang X, Liu Z, Li H, Zhu Z, Li W, Zhang F, Qing G. Intense Left-handed Circularly Polarized Luminescence in Chiral Nematic Hydroxypropyl Cellulose Composite Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308742. [PMID: 38270293 DOI: 10.1002/adma.202308742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/09/2024] [Indexed: 01/26/2024]
Abstract
Integrating optically active components into chiral photonic cellulose to fabricate circularly polarized luminescent materials has transformative potential in disease detection, asymmetric reactions, and anticounterfeiting techniques. However, the lack of cellulose-based left-handed circularly polarized light (L-CPL) emissions hampers the progress of these chiral functionalizations. Here, this work proposes an unprecedented strategy: incorporating a chiral nematic organization of hydroxypropyl cellulose with robust aggregation-induced emission luminogens to generate intense L-CPL emission. By utilizing N,N-dimethylformamide as a good solvent for fluorescent components and cellulose matrices, this work produces a right-handed chiral nematic structure film with a uniform appearance in reflective and fluorescent states. Remarkably, this system integrates a high asymmetric factor (0.51) and an impressive emission quantum yield (55.8%) into one fascinating composite. More meaningfully, this approach is versatile, allowing for the incorporation of luminogen derivatives emitting multicolored L-CPL. These chiral fluorescent films possess exceptional mechanical flexibility (toughness up to 0.9 MJ m-3) and structural stability even under harsh environmental exposures, making them promising for the fabrication of various products. Additionally, these films can be cast on the fabrics to reveal multilevel and durable anticounterfeiting capabilities or used as a chiral light source to induce enantioselective photopolymerization, thereby offering significant potential for diverse practical applications.
Collapse
Affiliation(s)
- Yuxiao Huang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Yi Qian
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Yongxin Chang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Jiaqi Yu
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Qiongya Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Mingliang Tang
- College of Life Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Xindi Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Zhepai Liu
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Hui Li
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Zece Zhu
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Wei Li
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Fusheng Zhang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Guangyan Qing
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| |
Collapse
|
2
|
Wu Q, Jiang QQ, Li YJ, Wang YA, Wang X, Liang RP, Qiu JD. σ-Hole Effect-Induced Electroluminescence of Halogen Cocrystals for Determination of Iodide in Seawater. Anal Chem 2024; 96:4623-4631. [PMID: 38456770 DOI: 10.1021/acs.analchem.3c05632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Developing new electrochemiluminescence (ECL) luminators with high stability, wide applicability, and strong designability is of great strategic significance to promote the ECL field to the frontier. Here, driven by the I···N bond, 1,3,5-trifluoro-2,4,6-triiodobenzene (TFTI) and 2,4,6-trimethyl-1,3,5-triazine (TMT) self-assembled into a novel halogen cocrystal (TFTI-TMT) through slow solution volatilization. Significant difference of charge density existed between the N atoms on TMT and the σ-hole of the I atoms on TFTI. Upon the induction of σ-hole effect, high-speed and spontaneous charge transferring from TMT to the σ-hole of TFTI occurred, stimulating exciting ECL signals. Besides, the σ-hole of the I atoms could capture iodine ions specifically, which blocked the original charge transfer from the N atoms to the σ-hole, causing the ECL signal of TFTI-TMT to undergo a quenching rate as high as 92.9%. Excitingly, the ECL sensing of TFTI-TMT toward I- possessed a wide linear range (10-5000 nM) and ultralow detection limit (3 nM) in a real water sample. The halogen cocrystal strategy makes σ-hole a remarkable new viewpoint of ECL luminator design and enables ECL analysis technology to contribute to addressing the environmental and health threats posed by iodide pollution.
Collapse
Affiliation(s)
- Qiong Wu
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Qiao-Qiao Jiang
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ya-Jie Li
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ying-Ao Wang
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xun Wang
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Jian-Ding Qiu
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
3
|
Yin W, Li J, Ma Y, Xing L, Chen Z, Liu B, Huo Y, Zhao Z, Ji S. Molecular engineering to enhance the reactive oxygen species generation of AIEgens and exploration of their versatile applications. J Mater Chem B 2023; 11:8182-8193. [PMID: 37545413 DOI: 10.1039/d3tb01367g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Fluorescent dyes with aggregation-induced emission (AIE) characteristics have shown potential applications in the fields of biological imaging, photodynamic therapy and photothermal therapy, in which photosensitizers (PSs) play a crucial role. However, how to design high-quality PSs with high reactive oxygen species (ROS) generation efficiency remains unclear. In this contribution, an effective molecular design strategy to improve the ROS generation efficiency of AIE PSs was proposed. A series of tetraphenylethylene derivatives containing the pyridine ring or pyridinium with different substituents were designed and synthesized. All the molecules were weakly emissive when molecularly dissolved in solution but displayed intense emission upon aggregation, demonstrating a phenomenon of AIE characteristic. Pyridinium molecules could be used as visualization agents to specifically stain the mitochondria in living cells, while most of the molecules failed to generate ROS upon white light irradiation. In contrast, TPE-Pys-BP containing benzophenone produced ˙OH and 1O2 efficiently in the presence of light due to its large spin-orbit coupling constant to promote efficient intersystem crossing. Such a property allowed TPE-Pys-BP to serve as a PS to kill cancer cells using photodynamic therapy. TPE-Pys-BP also exhibited mechanochromic luminescence (ML), and its emission could be reversibly switched between two distinct colors through repeated grinding and fuming processes. A security paper was fabricated using the ML properties of TPE-Pys-BP.
Collapse
Affiliation(s)
- Weidong Yin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Jianqing Li
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Yucheng Ma
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Longjiang Xing
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Zeduan Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Bo Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| |
Collapse
|