1
|
Cai H, Tepermeister M, Yuan C, Silberstein MN. Regulating hydrogel mechanical properties with an electric field. MATERIALS HORIZONS 2025. [PMID: 40353712 DOI: 10.1039/d5mh00308c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Stimuli-responsive polymeric materials have attracted significant attention due to their ability to change properties in response to various external stimuli. Using an electric field as the stimulus is of particular interest as it possesses the potential for seamless integration of materials with electronic systems. While many materials with electric field responsive actuation have an associated mechanical property change, it is beneficial to develop materials that exhibit mechanical property changes without accompanying significant shape deformation. To address this challenge, here we designed a semi-interpenetrating polymer network (semi-IPN) hydrogel system containing both polyelectrolytes and salt ions, which enables electric field induced changes in mechanical properties while minimizing actuation. We first successfully verified the viability of our design by removing salt ions through a diffusion-only method where we witnessed the stiffness increased to 4.5 times the initial value while still being highly deformable. After this, we applied an electric field to transport the salt ions out of the hydrogel, as shown by both Raman spectroscopy and scanning electron microscopy. We were able to show a time-dependent stiffness increase, the maximum of which was 5 times the original stiffness. We quantified ion transport and water-splitting in the hydrogel by both experiments and simulations. Following this, we showed functional system reversibility by reversing the direction of the current to reinject salt ions into the semi-IPN hydrogel and reducing its stiffness to below the initial value. It's worth noting that our simulations enable us to understand the governing mechanisms behind ion generation and salt transport that leads to mechanical property changes. Finally, we were able to fabricate a spatially variable stiffness haptic interface with our hydrogel, with demonstrated reversibility and cyclability. This research can possibly find applications in soft robotics and haptics and also inspire the development of bio-compatible electronics related devices.
Collapse
Affiliation(s)
- Hongyi Cai
- Materials Science and Engineering, Cornell University, Ithaca, New York, USA
| | - Max Tepermeister
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA.
| | - Chenyun Yuan
- Materials Science and Engineering, Cornell University, Ithaca, New York, USA
| | - Meredith N Silberstein
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA.
- Engineered Living Materials Institute, Cornell University, Ithaca, New York, USA
| |
Collapse
|
2
|
Liu Y, Yu T, Chen J, Hu R, Yang G, Li Y, Zeng Y. Switchable Mechanochromic Poly(methyl acrylate) Enabled by Dianthryl Disilane. Chem Asian J 2025:e202500317. [PMID: 40195805 DOI: 10.1002/asia.202500317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/09/2025]
Abstract
Mechanochromic polymers have potential in visualization of microscopic damages in materials, and the integration of non-invasive switching into mechanochromic polymers can enable rich on-demand functionality of polymer materials. In this work, we report the development of a mechanoresponsive fluorescent polymer with photogated properties, comprising poly(methyl acrylate) (PMA) and the photoswitchable mechanophore S2A2, which features two anthracene groups linked by a disilane spacer. The mechanochromic polymer PMA-S2A2 exhibits ratiometric fluorescence response upon mechanical deformation, which arises from the monomer and excimer emission ratio of anthracene controlled by the polymer strain. The mechanochromic property of the polymer can be switched off by irradiation with 365 nm UV light which induces [4 + 4] cycloaddition of the anthracene groups between and within the polymer chains. Importantly, the anthracene dimers can be reversibly dissociated in situ within the polymer film by irradiation with 254 nm UV, restoring the mechanochromic function. Furthermore, intermolecular photodimerization of anthracene increases the molecular weight and forms an entanglement network, significantly enhancing the material toughness. This reversible photocontrolled switch design offers a novel strategy for developing mechanochromic materials with modulated responses and mechanical properties.
Collapse
Affiliation(s)
- Yuyan Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Tianjun Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinping Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Rui Hu
- University of Chinese Academy of Science, Beijing, 100049, China
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guoqiang Yang
- University of Chinese Academy of Science, Beijing, 100049, China
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yi Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Yi Zeng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Science, Beijing, 100049, China
| |
Collapse
|
3
|
Yoshida Y, Sagara Y. Rotaxane-Based Mechanochromic Mechanophore Enabled by Amide Bond Formation. Chem Asian J 2025:e202401826. [PMID: 40013459 DOI: 10.1002/asia.202401826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 02/28/2025]
Abstract
Mechanochromic mechanophores are molecular structures that alter their absorption and fluorescence properties in response to applied mechanical force. Supramolecular mechanophores, which operate without requiring covalent bond cleavage, respond to smaller forces with instantaneous and reversible fluorescence changes. Rotaxane-based supramolecular mechanophores offer exceptional design flexibility due to their molecular structures. However, previously reported rotaxane mechanophores have predominantly relied on azide-alkyne Huisgen cycloaddition for the final rotaxane formation, which restricts the incorporation of azide or alkyne functional groups within the resulting rotaxane structure. This study presents a novel approach for synthesizing rotaxane mechanophores by constructing the axle molecule through amide bond formation between a succinimidyl ester and an amino group. Polyurethane elastomer films containing the rotaxane mechanophore exhibited a rapid and reversible on/off switch in green fluorescence from 9,10-bis(phenylethynyl)anthracene upon cycle stretching. The new mechanophore demonstrated force-responsive behavior comparable to previously reported rotaxane mechanophores. The amide bond formation strategy enables the incorporation of diverse functional groups into rotaxane-based mechanophores, significantly broadening their potential applications.
Collapse
Affiliation(s)
- Yuto Yoshida
- Department of Materials Science and Engineering, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yoshimitsu Sagara
- Department of Materials Science and Engineering, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
- Research Center for Autonomous Systems Materialogy (ASMat), Institute of Integrated Research (IIR), Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| |
Collapse
|
4
|
Zhou C, Zhao N, Liu W, Hao F, Han M, Yuan J, Pan Z, Pan M. In Situ Anchoring Functional Molecules to Polymer Chains Through Supramolecular Interactions for a Robust and Self-Healing Multifunctional Waterborne Polyurethane. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2410933. [PMID: 39840495 DOI: 10.1002/smll.202410933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/06/2025] [Indexed: 01/23/2025]
Abstract
Nowadays, much attention is paid to the development of high-performance and multifunctional materials, but it is still a great challenge to obtain polymer materials with high mechanical properties, high self-healing properties, and multifunctionality in one. Herein, an innovative strategy is proposed to obtain a satisfactory waterborne polyurethane (PMWPU-Bx) by in situ anchoring 3-aminophenylboronic acid (3-APBA) in a pyrene-capped waterborne polyurethane (PMWPU) via supramolecular interactions. The multiple functional sites inherent in 3-APBA can produce supramolecular interactions with groups on PMWPU, promoting the aggregation of hard domains in the polymer network, which confers the PMWPU-Bx strength (7.9 MPa) and high modulus (243.2 MPa). Meanwhile, the dynamic natures of boronic ester bonds formed by the condensation of 3-APBA endow PMWPU-Bx with a high self-healing efficiency. Additionally, PMWPU-Bx exhibits fluorescence tunability due to the controlled π-π stacking. In this research, the strategy of anchoring functional molecules onto polymers through supramolecular interactions synchronously achieves the high performance and the multi-functionality of waterborne polyurethanes, but also broadens their potential applications in the fields of optical anticounterfeiting and encrypted information transmission.
Collapse
Affiliation(s)
- Chen Zhou
- Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Nana Zhao
- Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Weiqi Liu
- Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Fukang Hao
- Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Mengjie Han
- Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Jinfeng Yuan
- Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, P. R. China
- Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Zhicheng Pan
- Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, P. R. China
- Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Mingwang Pan
- Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, P. R. China
- Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin, 300401, P. R. China
| |
Collapse
|
5
|
Gridneva T, Khusnutdinova JR. Functional coordination compounds for mechanoresponsive polymers. Chem Commun (Camb) 2025; 61:441-454. [PMID: 39636308 DOI: 10.1039/d4cc05622a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Small molecule probes that respond to a mechanical force ("mechanophores") have emerged as an important tool in the design of stimuli-responsive polymer materials. Although the majority of such mechanohphores are based on organic molecules, the utilization of metal complexes has also attracted attention as they offer a possibility to tune their spectroscopic properties and reactivity, and have the ability to reversibly form and break metal-ligand bonds through rational design of the ligand environment surrounding the metal. This review features representative examples of coordination compounds which were utilized as new, tunable tools to create various types of mechanoresponsive polymers.
Collapse
Affiliation(s)
- Tatiana Gridneva
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
| | - Julia R Khusnutdinova
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
6
|
Kawano Y, Masai H, Tsubokawa T, Yokogawa D, Iwai T, Terao J. Synergistic Degradation of Durable Polymer Networks by Light and Acid Enabled by Pyrenylsilicon Crosslinks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412544. [PMID: 39628304 PMCID: PMC11756034 DOI: 10.1002/adma.202412544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/25/2024] [Indexed: 01/24/2025]
Abstract
Material photocontrol has gained importance in process engineering and biomedical applications. However, highly photoreactive materials are intrinsically unstable to light, which limits their continuous use in lit environments owing to their gradual deterioration. Herein, synergistically photocontrollable materials in the presence of acid are developed to overcome the conventional trade-off between their photoreactivity and photostability. Pyrenylsilicon derivatives are designed as synergistically cleavable moieties on C-Si bonds under simultaneous treatment with light and acid through photoinduced dearomatization and protonation to generate the Wheland intermediate, whereas the derivatives are highly stable to light or acid alone. The unique reactivity of pyrenylsilicon derivatives is applied to various polymer network crosslinkers, enabling synergistic control and degradation of materials with light and acids. Because of their high photostability in the absence of acids, these materials can be utilized as optical materials, robust elastomers, and 3D photoprinted gels.
Collapse
Affiliation(s)
- Yutaro Kawano
- Department of Basic ScienceGraduate School of Arts and SciencesThe University of Tokyo3‐8‐1, Komaba, Meguro‐kuTokyo153‐8902Japan
| | - Hiroshi Masai
- Department of Basic ScienceGraduate School of Arts and SciencesThe University of Tokyo3‐8‐1, Komaba, Meguro‐kuTokyo153‐8902Japan
- PRESTOJapan Science and Technology Agency4‐1‐8, Honcho, KawaguchiSaitama332‐0012Japan
| | - Takuya Tsubokawa
- Department of Basic ScienceGraduate School of Arts and SciencesThe University of Tokyo3‐8‐1, Komaba, Meguro‐kuTokyo153‐8902Japan
| | - Daisuke Yokogawa
- Department of Basic ScienceGraduate School of Arts and SciencesThe University of Tokyo3‐8‐1, Komaba, Meguro‐kuTokyo153‐8902Japan
| | - Tomohiro Iwai
- Department of Basic ScienceGraduate School of Arts and SciencesThe University of Tokyo3‐8‐1, Komaba, Meguro‐kuTokyo153‐8902Japan
| | - Jun Terao
- Department of Basic ScienceGraduate School of Arts and SciencesThe University of Tokyo3‐8‐1, Komaba, Meguro‐kuTokyo153‐8902Japan
| |
Collapse
|
7
|
Talukdar D, Gole B. Foldamer-Based Mechanoresponsive Materials: Molecular Nanoarchitectonics to Advanced Functions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18791-18805. [PMID: 39051976 DOI: 10.1021/acs.langmuir.4c01252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Artificial molecules that respond to external stimuli such as light, heat, chemical signals, and mechanical force have garnered significant interest due to their tunable functions, variable optical properties, and mechanical responses. Particularly, mechanoresponsive materials featuring molecules that respond to mechanical stress or show force-induced optical changes have been intriguing due to their extraordinary functions. Despite the promising potential of many such materials reported in the past, practical applications have remained limited, primarily because their functions often depend on irreversible covalent bond rupture. Foldamers, oligomers that fold into well-defined secondary structures, offer an alternative class of mechanoactive motifs. These molecules can reversibly sustain mechanical stress and efficiently dissipate energy by transitioning between folded and unfolded states. This review focuses on the emerging properties of foldamer-based mechanoresponsive materials. We begin by highlighting the mechanical responses of foldamers in their molecular form, which have been primarily investigated using single-molecule force spectroscopy and other analytical methods. Following this, we provide a detailed survey of the current trends in foldamer-appended polymers, emphasizing their emerging mechanical and mechanochromic properties. Subsequently, we present an overview of the state-of-the-art advancements in foldamer-appended polymers, showcasing significant reports in this field. This review covers some of the most recent advances in this direction and draws a perspective for further development.
Collapse
Affiliation(s)
- Dhrubajyoti Talukdar
- Biomimetic Supramolecular Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Greater Noida, Uttar Pradesh 201314, India
| | - Bappaditya Gole
- Biomimetic Supramolecular Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Greater Noida, Uttar Pradesh 201314, India
| |
Collapse
|
8
|
He P, Wei C, Wang Q, Liu F, Liang S, Xu Y, Kang B. Mechanochromic Polymer Film with High Sensitivity toward Tensile Strain by the Post-Curing Ring-Closure Induced Pre-Stretching. Macromol Rapid Commun 2024; 45:e2400145. [PMID: 38776530 DOI: 10.1002/marc.202400145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Mechanochromic materials have received broad research interests recently, owing to its ability to monitor the in situ stress/strain in polymer materials in a straightforward way. However, one major setback that hinders the practical application of these materials is their low sensitivity toward tensile strain. Here a new strategy for pre-stretching of the mechanochromic agent in a polymer film on the molecular scale, which can effectively enhance the mechanochromic sensitivity of a polymer film toward tensile strain, is shown. In situ fluorescent measurement during tensile test shows an early activation of the mechanochromic agent at tensile strain as low as 50%. The pre-stretching effect is realized by first inducing ring-opening of the mechanochromic agent by molecular functionalization, and then compelling the ring-closure process in the cured film by elevated temperature. This post-curing ring-closure process will result in pre-stretched mechanochromic agent in a crosslinked network. The mechanism for mechanochromic activation of polymer films with different composition is elaborated by visco-elastic measurements, and the effect of pre-stretching is further confirmed by films with other compositions. Combined with the simplicity of the method developed, this work could offer an alternative strategy to enhance the sensitivity of different mechanochromic agents toward tensile strain.
Collapse
Affiliation(s)
- Peiyu He
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science, Mianyang, 621900, Sichuan, P. R. China
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, Sichuan, P. R. China
| | - Cheng Wei
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, Sichuan, P. R. China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, Sichuan, P. R. China
| | - Qin Wang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, Sichuan, P. R. China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, Sichuan, P. R. China
| | - Fengrui Liu
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, Sichuan, P. R. China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Shuen Liang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, Sichuan, P. R. China
| | - Yewei Xu
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science, Mianyang, 621900, Sichuan, P. R. China
| | - Biao Kang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, Sichuan, P. R. China
| |
Collapse
|
9
|
Wang Y, Sheng K, Lou J, Su Z, Wu M, Wang L. Design and synthesis of pyrene-based probes and their fluorescent detection of Sb(III). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124171. [PMID: 38507843 DOI: 10.1016/j.saa.2024.124171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/07/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
A series of pyrene-based fluorescent (FL) probes for Sb(III) were designed and synthesized. All of them exhibited luminescence by pyrene excimers in the mixture of DMSO and water and showed enhanced emission with the addition of Sb(III). By comparing their FL response to Sb(III), the effects of intramolecular hydrogen bond, inductive effect, and steric effect were investigated. Meanwhile, the FL enhancement factor of the best performing probe reached 10.28 and the detection limit was calculated to be 0.0535 mg/L, indicating that it might be used as a potential candidate for the treatment of Sb(III) in printing and dyeing wastewater.
Collapse
Affiliation(s)
- Yijia Wang
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China; College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| | - Kai Sheng
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China; College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Jiahao Lou
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China; College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Zhiqin Su
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Minghua Wu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China; College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Lili Wang
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China; College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
10
|
Zhu G, Zhang Q, Yu T, Chen J, Hu R, Yang G, Zeng Y, Li Y. Multiple Force-Triggered Downconverted and Upconverted Emission in Polymers Containing Diels-Alder Adducts. Chem Asian J 2024; 19:e202301147. [PMID: 38334040 DOI: 10.1002/asia.202301147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Fluorescent mechanophores can indicate the deformation or damage in polymers. The development of mechanophores with multi-triggered response is of great interest. Herein, Diels-Alder (DA) adducts are incorporated into linear poly(methyl acrylate) PMA-BA and network poly(hexyl methacrylate) (PHMA) as mechanophores to detect the stress caused by ultrasound, freezing, and compression. The DA mechanophores undergo retro-DA reaction to release 9-styrylanthracene chromophore upon applying force, resulting in cyan fluorescence. The dissociation ratio of the DA mechanophore after pulsed ultrasonication of PMA-BA solution for 240 minutes is estimated to be 52 % by absorption spectra and 1H NMR. Additionally, the rate constant of mechanical cleavage is calculated to be 1.2×10-4 min-1⋅kDa-1 with the decrease in molecular weight from 69 to 22 kDa measured by gel permeation chromatography. Freezing of PHMA gels as well as compression of PHMA bulk samples turn-on the DA mechanophores, revealing the microscale fracture. Photon upconversion responses toward various force stimuli are also achieved in both polymer solutions and bulk samples by doping platinum octaethylporphyrin (PtOEP) or palladium meso-tetraphenyltetrabenzoporphyrin (PdTPTBP) sensitizers with multiple excitation wavelengths.
Collapse
Affiliation(s)
- Guohua Zhu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Qiaoyu Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Tianjun Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinping Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Rui Hu
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Guoqiang Yang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Yi Zeng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Yi Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Science, Beijing, 100049, China
| |
Collapse
|
11
|
Lian Z, Liu L, He J, Fan S, Guo S, Li X, Liu G, Fan Y, Chen X, Li M, Chen C, Jiang H. Structurally Diverse Pyrene-decorated Planar Chiral [2,2]Paracyclophanes with Tunable Circularly Polarized Luminescence between Monomer and Excimer. Chemistry 2024; 30:e202303819. [PMID: 37997515 DOI: 10.1002/chem.202303819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
We reported the synthesis of a series of structurally diverse CPL-active molecules, in which pyrene units were installed to chiral pm/po-[2,2]PCP scaffolds either with or without a triple bond spacer for pm/po-PCP-P1 and pm/po-PCP-P2, respectively. The X-ray crystallographic analyses revealed that these pyrene-based [2,2]PCP derivatives exhibited diverse structures and crystal packings in the solid phases. The pyrene-based [2,2]PCP derivatives exhibit various (chir)optical properties in organic solutions, depending on their respective structures. In a mixture of dioxane and water, pm/po-PCP-P1 emit green excimer fluorescence, whereas pm/po-PCP-P2 emit blue one. The chiroptical investigation demonstrated that Rp-pm-PCP-P1 and Rp-pm-PCP-P2 exhibited completely opposite CD and CPL signals even they possess the same chiral Rp-[2,2]PCP core. The same argument also holds for other chiral pyrene-based [2,2]PCP derivatives. The theoretical calculation revealed that these unusual phenomena were attributed to different orientation between transition electric dipole moments and the magnetic dipole moments originating from the presence or absence of a triple bond spacer. These pyrene-based [2,2]PCP derivatives display various colours and fluorescence emissions in the solid state and PMMA films, possibly due to the different packings as observed in the crystal structure. Moreover, these compounds also can interact with perylene diimide through π-π interactions, leading to near-white fluorescence.
Collapse
Affiliation(s)
- Zhe Lian
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Lin Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Jing He
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Shimin Fan
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Shengzhu Guo
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaonan Li
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Guoqin Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yanqing Fan
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xuebo Chen
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chuanfeng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hua Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
12
|
Kannen F, Adachi T, Nishimura M, Yoza K, Kusukawa T. Mechanofluorochromic Properties of 1,4-Diphenylanthracene Derivatives with Hypsochromic Shift. Molecules 2024; 29:407. [PMID: 38257320 PMCID: PMC10820785 DOI: 10.3390/molecules29020407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Several types of 1,4-diphenylanthracene derivatives 1-4 were prepared, and their photophysical properties were observed in the solid and solution states. Interestingly, the CN-group-substituted 1,4-diphenylanthracene derivative 2 was found to exhibit a higher fluorescence quantum yield (ϕf = 0.71) in the solid state than in the solution state, probably due to the formation of an intermolecular Ar-CN⋯H-Ar hydrogen bond and antiparallel type locked packing structure in the solid state. Furthermore, for some derivatives, an increase in the fluorescence quantum yield was observed in the PMMA film (1 wt%) over both the solid state and the solution state. More interestingly, some of the 1,4-diphenylanthracene derivatives exhibited unusual mechanofluorochromic properties with a "hypsochromic shift" in luminous color depending on the substituents of the phenyl group, and with the derivatives having CF3, OMe, CN, and two F substituents (1d-1f, 2-4) showing a significant luminous color change with a "hypsochromic shift" after grinding. However, no change in the luminous color was observed for the derivatives having H, Me, and one F substituent (1a-1c), and especially for some of the CN-substituted derivatives, a reversible luminous color change with a "hypsochromic shift" was observed, probably due to the formation of an antiparallel type packing structure. These "hypsochromic" anthracene derivatives could probably be utilized as new mechanofluorochromic materials.
Collapse
Affiliation(s)
- Fumihiro Kannen
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Tadatoshi Adachi
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Manato Nishimura
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kenji Yoza
- Bruker Japan K.K., 3-9 Moriya-cho, Kanagawa-ku, Yokohama 221-0022, Japan
| | - Takahiro Kusukawa
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|